Верификация физической нереализуемости гравитационных сингулярностей
| Категория реферата: Рефераты по науке и технике
| Теги реферата: диплом, решебник 11
| Добавил(а) на сайт: Характеров.
Предыдущая страница реферата | 1 2 3 | Следующая страница реферата
Необычное топологическое состояние жидкости
В работах [10, 11, 25] показана возможность существования идеальной жидкости в двух своих топологических состояниях – в обычном, соответствующем сплошному сферически симметричному телу, и в необычном, соответствующем полому телу с найденной Фуллером и Уилером [26, 27] зеркально симметричной конфигурацией его собственного пространства. Такая необычная топология соответствует чрезвычайно массивным телам – полым нейтронным звездам, принимаемым сейчас за черные дыры, изначально полым сверхновым звездам и квазарам. Во внутреннем пустом собственном пространстве полых тел вместо явления расширения наблюдается явление сжатия «внутренней вселенной» и в соответствии с теорией устойчивости и с синергетикой в стабильном состоянии может находиться только антивещество. Метрически сингулярная сферическая поверхность, отделяющая вещество от антивещества и являющаяся геометрическим местом центров тяготения имеет минимальное физически реализуемое в полом теле значение фотометрического радиуса r0.
Лишь в жестких СО гипотетических астрономических тел, вещество которых находится в тепловом равновесии а, следовательно, и в вырожденном состоянии, на такой сингулярной поверхности несобственное значение скорости света равно нулю. Согласно уравнениям термодинамики на ней температура, давление, плотность массы, а также энтальпия и внутренняя энергия вещества становятся бесконечно большими, а значения молярного объема нулевым. Это вполне соответствует нулевому несобственному значению скорости света, однако является физически нереальным, ввиду недостижимости для вещества, как нулевых, так и бесконечно больших значений этих характеристик. И, следовательно, математически неизбежная сингулярность принципиально не должна физически реализоваться. Косвенная верификация этой нереализуемости следует из непосредственной верификации недостижимости бесконечно больших значений абсолютной температуры и давления.
Ввиду физической нереализуемости абсолютно тонкой поверхности и наличия в сопутствующей жидкости СО предельной фундаментальной планковской длины 1,6·10–35 м эта сингулярность «размывается» квантовыми эффектами. К тому же она имеет место лишь у гипотетической идеальной жидкости, являющейся вырожденным и, следовательно, физически нереализуемым состоянием реальных жидкостей.
В СО Вейля точки самосжимающейся сингулярной сферической поверхности движутся с радиальной скоростью, равной гравибарическому несобственному значению в них скорости света V0 = Vc0 = HR0. Однако, частота взаимодействия между находящимися на ней частицами все же не равна нулю (f0 = H r0/c), что обеспечивает возможность спонтанного проникновения антивещества к веществу [11].
Решение уравнений для полого тела
Решение будем рассматривать при пренебрежительно малом давлении паров идеальной жидкости над ее поверхностью (pe = 0). Учитывая то, что при стремлении радиуса граничной поверхности тела к значению r0 параметр ze стремится к нулю, находим функцию:
bv = be = 1 – r0/re – (κc2μe / 6 + H2 / c2)(re2 – r03 / re).
Таким образом, вакуумное несобственное значение скорости света vcv = c(bv)1/2 внутри идеальной однородной жидкости определяется лишь поверхностной ее плотностью, постоянной Хаббла и радиусами ее граничной и сингулярной поверхностей. Поэтому, зная re и μe и учитывая найденную здесь зависимость, можно решить систему дифференциальных уравнений от y и z и тем самым определить численное значение фотометрического радиуса сингулярной поверхности, отделяющей антивещество от вещества.
Стабильное минимальное значение интеграла от плотности гравитермодинамической энтальпии может быть достигнуто лишь при отсутствии изменений внутренней энергии всей жидкости, что у гипотетической идеальной жидкости с абсолютно остывшими внешней и внутренней граничными поверхностями (Te≈0) обеспечивается. Такое стабильное равновесное состояние идеальной жидкости, соответствующее минимуму интеграла по всему ее объему от плотности гравитермодинамической энтальпии достигается благодаря наличию взаимосвязи между вариациями фотометрических радиусов граничных поверхностей жидкости и ее срединной сингулярной поверхности.
При сколь угодно большом значении массы всей идеальной жидкости всегда найдется достаточно большое значение re, при котором r0 > 0. Поэтому масса полого тела принципиально ничем не может быть ограничена. При достаточно же малом значении массы всей идеальной жидкости может оказаться, что r0 = 0 и, следовательно, форма идеальной жидкости в фундаментальном пространстве СО Вейля будет обычной шарообразной.
Выводы
Уравнения ОТО и термодинамики обеспечивают возможность полой топологической формы идеальной однородной жидкости, находящейся в состоянии теплового равновесия. При этом они позволяют найти значение фотометрического радиуса сингулярной поверхности, отделяющей антивещество от вещества. Гипотетическая идеальная жидкость, хотя и является принципиально недостижимым вырожденным состоянием реальной жидкости, все же позволяет проанализировать влияние чрезвычайно сильного гравитационного поля на пространственно-временные характеристики вещества. Принципиальная недостижимость, как нулевых, так и бесконечно больших значений этих характеристик является основанием для косвенной верификации физической нереализуемости гравитационной сингулярности. Для более детального изучения необычных свойств полых тел целесообразно в дальнейшем рассмотреть реальную жидкость, обладающую не жесткой СО а, следовательно, – и не нулевым несобственным (координатным) значением скорости света на сингулярной поверхности.
Список литературы
Эйнштейн А. Сущность теории относительности. М.: ИЛ, 1953.
Иваненко Д.Д. Актуальность теории гравитации Эйнштейна. В кн.: Проблемы физики: классика и современность. Ред. Тредер Г.-Ю., М.: Мир, 1982, с. 127.
Мёллер К. Успехи и ограниченность эйнштейновской теории относительности и гравитации. В кн.: Астрофизика, кванты и теория относительности. Ред.: Федоров Ф.И., М.: Мир, 1982, с. 17.
Мёллер К. Неизбежны ли сингулярности в теории гравитации? В кн.: Проблемы физики: классика и современность. Ред. Тредер Г.-Ю., М.: Мир, 1982, с. 99.
Хокинг С. Интегралы по траекториям. В кн.: Общая теория относительности. Ред.: Хокинг С., Израэль В., М.: Мир, 1983, с. 363.
Hawking S., Penrose R. Proc. Roy. Soc., 1970, v. A314, p. 529.
Хокинг С., Эллис Дж. Крупномасштабная структура пространства-времени, М.: Мир, 1977.
Пенроуз Р. Конформная трактовка бесконечности. В кн.: Гравитация и топология. Актуальные проблемы. Ред.: Д. Иваненко. – М.: Мир, 1966. – с. 152...181.
Пенроуз Р. Структура пространства-времени. – М.: Мир, 1972. – с. 183.
Даныльченко П.И. Гносеологический подход к формированию систем отсчета в ОТО. Сборник материалов научно-практического семинара «Проблемы верификации в электоральном процессе». – Керчь, 2004. – с. 56...61.
Даныльченко П.И. О возможностях физической нереализуемости космологической и гравитационной сингулярностей в ОТО. В сб.: Калибровочно-эволюционная интерпретация специальной и общей теорий относительности (КЭИТО), Вінниця, О. Власюк, 2004, с. 35.
Даныльченко П.И. Вечна ли Вселенная? Доклад на II Международной научной конференции «Философия космизма и современная авиация», Киев, 7...8 апреля 2005; Киев, НиТ, 2005.
Об эволюционности процесса расширения Вселенной. Тезисы докладов XII-й Российской гравитационной конференции, 20...26 июня 2005, Казань, Россия, с. 84.
Даныльченко П.И. Основы калибровочно-эволюционной теории Мироздания (пространства, времени, тяготения и расширения Вселенной). – Винница, 1994. – 78 с.
Калибровочно- эволюционная интерпретация специальной и общей теорий относительности. Киев, НиТ, 2005.
Рекомендуем скачать другие рефераты по теме: александр реферат, оформление реферата.
Категории:
Предыдущая страница реферата | 1 2 3 | Следующая страница реферата