Восстановление эталона циклических сигналов на основе использования хаусдорфовой метрики в фазовом пространстве координат
| Категория реферата: Рефераты по науке и технике
| Теги реферата: бесплатные тесты, скачати реферат
| Добавил(а) на сайт: Дрёмин.
Предыдущая страница реферата | 1 2 3 4 5 | Следующая страница реферата
а началу -го фрагмента -го цикла – момент времени
. (5)
Применим к -му фрагменту эталона операторное преобразование (2), положив параметр сдвига . Тогда из (2) с учетом соотношений (3)- (5) следует, что процесс порождения -го фрагмента на -м цикле можно представить в виде
, (6)
где
. (7)
Предложенная модель, которая описывает неравномерные по времени искажения эталона , более пригодна для описания реальных циклических сигналов, в частности ЭКГ, нежели ее упрощенный вариант
,
полученный в предположении, что фигурирующий в (7) случайный параметр зависит только от номера цикла, но не зависит от номера фрагмента.
Нетрудно показать, что стохастическая модель (6),(7) является прямым обобщением известных моделей строго периодического и почти периодического процессов. Действительно, положив в (7) , модель (6) можно представить в виде соотношения
,
которое описывает почти периодический процесс [9], а при дополнительном условии , сводится к модели строго периодической функции .
Предложенная модель легко может быть обобщена для описания процесса порождения более сложных циклических сигналов, в частности, ЭКГ с изменяющейся морфологией отдельных циклов (экстрасистолами) [10]. Для этого достаточно ввести в рассмотрение не один, а эталонов , и предположить, что каждый -й цикл порождается путем аналогичных искажений одного из этих эталонов, выбираемых случайным образом в соответствии с вероятностями .
Генератор циклических последовательностей. Рассмотрим достаточно простой алгоритм генерации дискретных циклических последовательностей по эталонам. Пусть каждый из эталонов , () представлен конечным числом дискретных значений , зафиксированных с постоянным шагом квантования по времени. Зададим общее число фрагментов каждого эталона и номера точек , которые определяют границы -го и -го фрагмента -го эталона.
При таких исходных данных процедура генерации циклической последовательности сводится к следующим шагам.
Шаг 1. Задаем общее число циклов генерируемой последовательности.
Шаг 2. Определяем число циклов, порождаемых -м эталоном, по формуле , где здесь и далее -операция округления до целого числа .
Шаг 3. Выбираем номер эталона, порождающего -й цикл (), по значению реализации целочисленной случайной величины , распределенной на интервале [1,G] т.е. =.
Шаг 4. Если , то повторяем шаг 3.
Шаг 5. Определяем число точек -го фрагмента -го цикла по формуле
,
где - реализация случайной величины , которая с нулевым математическим ожиданием распределена на интервале .
Шаг 6. По дискретным значениям -го фрагмента -го эталона в узлах любым из методов интерполяции вычисляем значения генерируемой последовательности в точках.
Шаг 7. Модифицируем каждое вычисленное значение на основе мультипликативной процедуры , где - реализация случайной величины , которая с нулевым математическим ожиданием распределена на интервале .
Шаг 8. Если , то возвращаемся к шагу 5.
Рекомендуем скачать другие рефераты по теме: отчет по практике, решебник 11 класс.
Категории:
Предыдущая страница реферата | 1 2 3 4 5 | Следующая страница реферата