Восстановление эталона циклических сигналов на основе использования хаусдорфовой метрики в фазовом пространстве координат
| Категория реферата: Рефераты по науке и технике
| Теги реферата: бесплатные тесты, скачати реферат
| Добавил(а) на сайт: Дрёмин.
1 2 3 4 5 | Следующая страница реферата
Восстановление эталона циклических сигналов на основе использования хаусдорфовой метрики в фазовом пространстве координат
Леонид Соломонович Файнзильберг, к.т.н.
Предложена стохастическая модель порождения циклических сигналов. Показано, что эта модель является обобщением моделей периодической и почти периодической функций. Предложен конструктивный метод оценки эталона по реализации циклического сигнала, наблюдаемого в фазовом пространстве координат.
Введение. Повторяющиеся во времени процессы часто протекают в технических и биологических системах. Такие процессы порождают специфические сигналы, которые в научной литературе принято называть циклическими [1] или квазипериодическими [2]. Типичными примерами циклических сигналов являются электрокардиограмма (ЭКГ), реограмма, магнитокардиограмма и многие другие физиологические сигналы, отражающие циклический характер работы системы кровообращения живого организма.
Известно, что существующие компьютерные системы анализа и интерпретации циклических сигналов, в частности, ЭКГ, все еще не обеспечивают требуемую достоверность результатов [3]. Согласно [4], это в первую очередь вызвано ошибками, которые возникают при измерении параметров (диагностических признаков) при обработке реальных сигналов во временной области. Один из альтернативных методов анализа таких сигналов, предложенный в [5] и получивший развитие в целом ряде других работ, в частности, в
[6-8], предполагает отображение и обработку сигнала в фазовом пространстве координат.
В настоящей статье предлагается модель порождения циклических сигналов и на основе этой модели исследуется новый метод восстановление эталона циклического сигнала по искаженной реализации, наблюдаемой в фазовом пространстве.
Постановка задачи. Пусть наблюдаемый сигнал является результатом искажения периодического процесса случайным возмущением , где - некоторая функция. Назовем эталонным циклом - часть ненаблюдаемой функции на любом из ее периодов . Ставится задача оценить эталон по реализации , наблюдаемой на отрезке .
Стохастическая модель порождения циклических сигналов. Прежде чем переходить к решению поставленной задачи, рассмотрим одну из возможных моделей порождения по эталону. Будем считать, что эталон может быть представлен в виде функции, кусочно-заданной на интервале отдельными фрагментами
(1)
полагая, что число таких фрагментов . Применительно к ЭКГ такие фрагменты соответствуют стадиям процесса возбуждения отдельных участков сердца - деполяризации предсердий (волне), возбуждению (комплексу) и реполяризации (волне ) желудочков [1].
Представим наблюдаемый сигнал в виде последовательности искаженных эталонов (1), предполагая, что на каждом -м цикле такой последовательности () отдельные фрагменты эталона независимо один от другого линейно растягиваются (сжимаются) по времени, а сама функция линейно растягивается (сжимается) по амплитуде. Иными словами, предполагается, что процесс порождения -го фрагмента () каждого -го цикла () осуществляется на основе операторного преобразования
, (2)
где - соответственно параметры линейного растяжения (сжатия) по амплитуде и времени, а - сдвиг по времени. Для обеспечения непрерывности порождаемого сигнала предполагается, что Последнее требование всегда можно обеспечить, выполнив предварительную нормировку эталона .
Пусть в пределах каждого -го цикла параметр принимает фиксированное значение
, (3)
где - последовательность реализаций независимых случайных величин, которые с нулевым математическим ожиданием распределены на интервале , ограниченном фиксированным числом .
Предположим также, что параметр принимает фиксированное значение в процессе порождения каждого -го фрагмента -го цикла
, (4)
где - последовательность реализаций независимых случайных величин, которые с нулевым математическим ожиданием распределены на интервалах , ограниченными фиксированными числами .
При таких предположениях продолжительность -го фрагмента -го цикла сигнала связана с продолжительностью соответствующего фрагмента эталона соотношением
.
Следовательно, общая продолжительность -го цикла порождаемого сигнала определяется выражением
,
началу -го цикла соответствует момент времени
,
Рекомендуем скачать другие рефераты по теме: отчет по практике, решебник 11 класс.
Категории:
1 2 3 4 5 | Следующая страница реферата