Современные проблемы и концепции математического образования учителя физики
| Категория реферата: психология, педагогика
| Теги реферата: предпринимательство реферат, где диплом
| Добавил(а) на сайт: Магазинер.
1 2 3 4 5 | Следующая страница реферата
Современные проблемы и концепции математического образования учителя физики
В. В. Афанасьев, Е. И. Смирнов
Математическое образование физика - что это? Естественно самоорганизующаяся в соответствии с физической сущностью субстанция в образовательном поле индивида или целенаправленный опыт освоения математической деятельности, достаточный для объяснения и оперирования с физическими явлениями и процессами? Эти и другие вопросы звучат особенно актуально в образовательной нише подготовки учителя физики в педвузе. Существенной особенностью подготовки физика является то, что в учебной деятельности логика проектирования и развертывания (дидактического раскрытия) содержания учебных предметов профессионального образования направлена на интериоризацию базовых учебных элементов (знаний, умений, навыков) в процессе приобретения, применения и преобразования опыта, в то время как для эффективности реализации профессионально-предметной подготовки учителя физики необходимо повторное (по отношению к школьному образованию) обращение в физических дисциплинах к базовым учебным элементам в расширенном и обобщенном качестве, в том числе с методологических и методических позиций. К тому же возникают дополнительные проблемы адекватности математического языка и средств для объяснения существа физических явлений и процессов на школьном уровне. При этом логика расширенного и методологического подхода к математическому образованию учителя физики может быть в полной мере реализуема и соответствовать инновационным тенденциям, разрабатываемым в настоящее время в технологиях профессиональной подготовки учителя. Имеется в виду, в частности, технология фундирования, разрабатываемая в Ярославском педагогическом университете и признанная в том смысле, что наши разработки утверждены Министерством образования в качестве Единых заказ-нарядов на фундаментальные исследования и практически реализуются введением экспериментального Государственного образовательного стандарта (приказ № 2046 от 14.05.2001) подготовки учителя математики (ведется интенсивное исследование теории и технологии фундирования школьных знаний в подготовке учителя физики).
Системогенез профессиональной подготовки предполагает анализ как объективных, так и субъективных условий становления будущего учителя. Изменения в структуре высшего педагогического образования России, появление средних школ разного профиля: лицеев, гимназий, колледжей и т.п., демократизация общественной жизни - имеют в своей основе коренной поворот к гуманистическим позициям функционирования современного образования. Способность и готовность учителя XXI века дать личности возможность получения образования необходимого уровня и глубины на любом отрезке ее жизнедеятельности становится теперь одной из основных тенденций развития современного образования. Современный этап развития образования выдвигает повышенные требования к профессиональной (особенно предметной) подготовке учителя, вооруженного новейшими методиками и технологиями обучения, творчески мыслящего создателя учебного процесса в школах XXI века.
В немалой степени эта тенденция коснулась содержания математического образования в среднем и высшем звене, равно как и теорий, концепций и методов обучения математике в естественнонаучной подготовке учителя. Индивидуализация и мотивация обучения, дифференцированный подход, использование новейших исследований в психологии, физиологии человека, педагогике для совершенствования процесса обучения, поиск оптимальных условий для усвоения сложного математического содержания требуют от будущего учителя физики не только высокой компетентности в предметной области, но и достаточной подготовленности к самообразованию, к проявлению творческой активности на основе профессиональной идентификации личности учителя и профессии.
Одной из ведущих задач педагогического процесса подготовки учителя физики средней (полной) школы является преобразование личности студента в учителя-профессионала, способного решать все многообразие задач, связанных с обучением и воспитанием школьников. Улучшение профессиональной подготовки учителя физики требует не только новых, более эффективных путей организации учебно-воспитательного процесса в педвузе, но и пересмотра структуры и содержания математической подготовки студентов-физиков, поднятия ее на технологический уровень. Поэтому рассмотрение педагогического процесса и математического образования будущих учителей физики, его задачи, планы, программы исходят из потребности поисков нового, оптимального в методах, средствах и формах обучения, способствующих формированию целостной системы научных знаний.
Проблема математического образования будущего учителя физики является многослойной и требует целостного и всестороннего рассмотрения. Это и вопросы предметной математической подготовки: структура, содержание, принципы, критерии, объем и т.п.; и вопросы общекультурной гуманитарной составляющей: развитие качеств мышления (анализ, синтез, конкретизация и т.д.), общеучебных умений, связанных с математической деятельностью, математического обеспечения физических теорий, охватывающего современные разделы математики, развитие творческой активности студентов в процессе восприятия физических теорий, в том числе через математическое моделирование.
Объективно значимость математической подготовки учителя физики в педвузе возрастает с каждым годом ввиду усиления профилизации школьного образования, гуманизации преподавания естественных дисциплин, объективизации процесса фундирования знаний на современном этапе развития образовательных процессов. При этом, однако, выявляется ряд негативных линий. Во-первых, это явная тенденция к минимизации использования математической деятельности в школьном физическом образовании (что особенно ярко проявляется в западных образовательных системах) и, во-вторых, существенное падение интереса к естественнонаучным дисциплинам, особенно в старших классах средней школы.
Анкетирование (проведенное Ю.П. Поваренковым в Ярославской области) более чем 1000 школьников дало следующие результаты
Экспериментальные исследования показывают, что учитель физики по окончании педагогического вуза имеет слабые практические навыки оперирования математическими понятиями: производной, интегралом, элементарными функциями, вероятностью, матрицами и т.п., к тому же усвоенными на формальном уровне. Математическое моделирование физических процессов понимается схоластически, с отсутствием вариативности, самостоятельности исследования и пониженным фоном творческой активности будущего учителя физики. В то же время содержание и объем математического образования не в полной мере обоснованы с методологических и с профессиональных позиций и к тому же перегружены второстепенными знаниями, применение которых в будущей профессиональной и социокультурной деятельности учителя физики неадекватно формируемой потребности.
Таким образом, если обратиться к фактическому состоянию дел в математическом образовании студента-физика, то можно обнаружить целый ряд противоречий.
Нами выделены следующие основные противоречия:
1) Между объективной целостностью математического блока знаний, умений, математических навыков и существующей структурой математической подготовки учителя физики.
Действительно, несколько десятилетий назад высшая математика в педвузах преподавалась физикам в виде отдельных математических дисциплин: математический анализ, геометрия, алгебра и теория чисел с общей трудоемкостью более 2000 часов. Ряд лет назад в соответствии с Государственным образовательном стандартом (требования к обязательному минимуму содержания и уровню подготовки по специальности "01.04.00 - физика" - 1995 год) был введен учебный предмет "высшая математика", объединяющий в себе содержание трех вышеперечисленных математических дисциплин с общей трудоемкостью около 1000 часов. Оставляя пока в стороне вопросы содержания учебной программы, заметим, что данный предмет составляет ядро математической подготовки и поэтому должен быть достойно представлен собственно математическими дисциплинами (т.е. предыдущий подход был более обоснованным).
Целостность (и интегративность) математических знаний при этом ни в коей мере не страдает, так как ее в последнем варианте (1995 г.) и не было (соответствующая учебная программа представляла собой формальный набор единиц учебного материала - далеко не полного и внутренне не взаимосвязанного). Отсутствие рядов Фурье, элементов функционального анализа и теории групп, интегральных уравнений и вариационного исчисления вряд ли положительно сказывалось на изучении таких разделов физики, как ядерная физика, оптика, механика, квантовая теория поля и др.
И вот в 2001 году выходит второе поколение ГОС по физике, где математика представлена с общей трудоемкостью 800 часов (с возможностью использования часов национально-регионального компонента - 195), при этом содержание требований к уровню математической подготовки выглядит, мягко говоря, странным. Дело в том, что не удовлетворены два важнейших принципа построения содержания образовательного стандарта: его объективизации и наличия универсального ядра. Дословно аннотация содержания выглядит так: математический анализ (в стандартной комплектации), далее функциональный анализ, вариационное исчисление, теория вероятностей и математическая статистика, исследование операций и т.д.
Но что отбирать в функциональном анализе? Теорию линейных самосопряженных операторов в гильбертовом пространстве или теорию пространств Соболева и обобщенных функций Шварца; спектральную теорию или гармонический анализ и преобразование Фурье медленно и быстро растущих обобщенных функций? А может быть, сильные и слабые сходимости в локально выпуклых пространствах или теорию диффузионных процессов? Все эти разделы функционального анализа имеют достаточно прочные физические корни и формально имеют право быть представленными в учебных планах. Однако беда в том, что для двух произвольно выбранных вузов пересечение содержания математической подготовки может оказаться пустым и в то же время не противоречащим стандарту. А как быть с вариационным исчислением: остановиться на формульных и геометрических вопросах или рассматривать глубокие разделы теории функций, вырожденных лагранжианов и континуальных интегралов Фейнмана. Можно ли успеть что-либо сказать о прямых методах вариацинного исчисления в решении краевых задач для дифференциальных уравнений в частных производных или о полях экстремалей и уравнении Гамильтона-Якоби?
Поэтому отсутствие обоснованных принципов отбора содержания математической подготовки будущих учителей физики, в том числе в методологическом плане, безусловно, может негативно сказываться на качестве их предметной подготовки.
2) Между возможностью моделирования физических явлений и процессов и формально-логическим стилем преподавания математических дисциплин.
Восприятие новых математических знаний студентами, в том числе будущими учителями физики, будет более осмысленным и устойчивым, если преподаватель воспользуется современными методами и подходами обучения математике, в частности, использованием "мягких" математических моделей по В.И. Арнольду [8] или метода наглядно-модельного обучения (технология этого метода активно разрабатывается на базе Ярославского педагогического университета).
3) Между естественным "формализмом" математического языка (и как следствие - формализмом знаний) и сущностью математических объектов (понятий, теорем, доказательств и т.п.), проявление которой в процессе обучения математике является важной методической проблемой.
Более того, в последние годы в преподавании физики заметно стала проявляться тенденция к "самообслуживанию". Речь идет о восполнении пробелов в содержании учебных программ (сознательно) по математике самими преподавателями физики в процессе изучения физических знаний. Например, при изучении квантовой электродинамики возникает необходимость обращения к понятию обобщенной функции и чисто математической задаче перемножения обобщенных функций. Конечно, преподаватель физики донесет формальную сторону вопроса до обучаемых, однако только специалист-математик сможет (имея на это достаточное время) проявить существо понятий, обращаясь к функционально-топологическим аспектам вопроса. Такое самодостаточное преподавание приводит к естественному "формализму" знаний, что наиболее выпукло проявляется на государственных экзаменах. Причем речь идет не только о таких понятиях, как спектр оператора, собственные значения, гильбертово пространство или самосопряженность атомных гамильтонианов, но и о таких базовых понятиях, как кратные и криволинейные интегралы, полный дифференциал и полная производная, градиент функции и т.п.
4) Между содержанием учебно-методического обеспечения математического образования физики в форме учебно-методических комплексов (УМК) (если таковые имеются, а фактически разрозненных компонентов УМК - методических указаний, пособий, учебников, программного обеспечения, рабочих программ и т.п.) и объективной необходимостью наличия целостной методической системы обучения будущих учителей физики.
Следует отметить, что вопросы математического образования будущих учителей физики неоднократно рассматривались в процессе подготовки ГОС в структуре Научно-методических советов России по физике и математике (1994-1996 гг.). Например, на совместном совещании НМС по физике и математике УМО ОППО Минобразования РФ и секции университетов и педвузов НМС по физике Госкомвуза РФ в сентябре 1995 года было принято решение о корректировке образовательного стандарта по математике для физиков и предложены конкретная структура и учебные программы по математике для будущих учителей физики. К сожалению, в Государственные требования к минимуму содержания и уровню подготовки выпускников по специальности "01.04.00 - физика" эти предложения не вошли, и до последнего времени мы работали с первоначальным вариантом 1994 года. О содержании последнего стандарта (2001) мы уже говорили.
5) Между ориентацией на построение содержания математического образования, исходя из его особенностей, и необходимостью учета психологических аспектов сенсорно-перцептивных процессов адекватного восприятия студентами-физиками математического содержания.
Рекомендуем скачать другие рефераты по теме: отправить сообщение, реферат личность.
Категории:
1 2 3 4 5 | Следующая страница реферата