Математическая логика в младших классах
| Категория реферата: Рефераты по педагогике
| Теги реферата: соціологія шпори, охрана труда реферат
| Добавил(а) на сайт: Дураничев.
Предыдущая страница реферата | 1 2 3 4 5 6 7 8 9 10 11 | Следующая страница реферата
В XIX – XX веке в трудах Дж. Буля возникает алгебраическая логика.
Развивалась она в работах Ч. Пирса, П. С. Порецкого, Б. Рассела, Д.
Гильберта и др. Основным предметом алгебраической логики стали
высказывания, рассуждения. Под высказыванием понимается каждое предложение, относительно которого имеет смысл утверждать, истинно оно или ложно.
В алгебраической логике для обозначения истинности вводится символ И, а для обозначения ложности - символ Л. Часто вместо этих символов употребляются числа 1 и 0.
Можно сказать, что математическая логика изучает основания математики, принципы построения математических теорий.
Основным предметом математической логики является построение и изучение формальных систем. Центральным результатом является, доказанная в 1931 году австрийским математиком Геделем теорем о неполноте, утверждающая, что для любой «достаточно разумной» формальной системы существуют неразрешимые в ней предложения, то есть такие формулы А, что ни сама формула А, ни ее отрицания не имеют вывода.
§ 2 Математический язык. Понятие о математических словах и предложениях.
Когда мы пишем сочинение, письмо, выступаем на собрании, то свои мысли выражаем при помощи предложений. Читая книгу, статью, мы опять встречаемся с тем, что рассуждения есть цепочка некоторых предложений.
Изучая математику мы тоже пользуемся предложениями, которые могут быть записаны как на естественно (русском) языке, так и на математическом, с использованием символов (3 + 4 · 7 = 31). Математические предложения характеризуются содержанием и логической структурой.
Но, как известно, любое предложение образуется из слов, а слова – из букв некоторого алфавита. Алфавит состоит из: десяти цифр, для записи чисел в десятичной системе (0,1,2,…,9); букв латинского алфавита, для обозначения переменных, множеств их элементов (a, b, c, …, z, A, B, C, …, Z); знаков, для записи действий (+, - , ·, :, ( , и др.); знаков отношений, для записи предложений ( =, >, < и др.). А также в символических записях встречаются скобки, запятая.
Из этих знаков конструируются слова и предложения. Слово – это такая конечная последовательность букв алфавита, которая имеет смысл. Например, запись 7 - : 8 + смысла не имеет, и, значит словом ее назвать нельзя.
В математике различаются элементарные и составные предложения. Например:
«Число 56 делится на 8» – это элементарное предложение. А предложение
«Число 56 четное и делится на 8» составное.
Среди суждений, устанавливающих различные отношения между понятиями, выделяют высказывания и высказывательные формы. Высказыванием называется предложение, относительно которого имеет смысл вопрос, истинно оно или ложно.
Например, предложение «число 8 четное» есть истинное высказывание, а
предложение «3 + 3 = 32» ложное высказывание. Каждому высказыванию
приписывают одно из двух значений: И (истина) и Л (ложь). Значения И и Л
называют значениями истинности высказывания. Если высказывание
элементарное, то его значение истинности определяется по его содержанию. А
если оно составное, то значение истинности зависит от значения истинности
составляющих его элементарных высказываний, соединенных при помощи слов:
«и», «или», частицы «не», «если…, то…» и др., которые называются
логическими связками.
Выясним смысл, который в математике имеет союз «и». Пусть А и В – произвольные высказывания. Образуем из них, с помощью союза «и», составное высказывание. Назовем его конъюнкцией и обозначим А ? В (читают: А и В).
Конъюнкицией высказываний А и В называется высказывание А ? В, которое истинно, когда оба высказывания истинны, и ложно, когда хотя бы одно из этих высказываний ложно.
Используя данное определение, найдем значение истинности высказывания
«Число 102 четное и делится на 9». Высказывание имеет форму «А и В», где А
– число 102 четное – И, а В – число 102 делится на 9 – Л. Следовательно, и
все предложение ложно.
Выясним теперь, какой смысл в математике имеет союз «или». Пусть А и В – произвольные высказывания. Образуем из них с помощью союза «или» составное высказывание. Назовем его дизъюнкцией и обозначим А ? В (читают: А или В).
Дизъюнкцией высказываний А и В называется высказывание А ? В, которое истинно когда истинно хотя бы одно из этих высказываний, и ложно, когда оба высказывания ложны.
Используя данное определение, найдем значение истинности высказывания
«Число 15 четное или делится на 3», высказывание имеет форму «А или В», где А – Число 15 четное – Л, а В – число 15 делится на 3 – И.
Следовательно, и все предложение истинное.
Очень важно знать какой из союзов «и» или «или» присутствует в
предложении, иначе может получиться например такое недоразумение: Как-то
раз Катя пошла гулять с собакой, и вернулась с прогулки взволнованная.
Какой-то прохожий упрекнул ее в нарушении правил содержания собак в городе.
Листок с правилами был наклеен на заборе, и одно из них гласило: собака на
прогулке должна быть на поводке… в наморднике (кусочек бумаги после слов
«на поводке» был оторван).
Она спустила собаку с поводка, но оставила в наморднике. На этом примере
хорошо видна роль союза. Если бы был союз «и», прохожий оказался бы прав.
Если бы союз «или» была бы пава Катя.
Часто в математике приходится строить высказывание, в которых что-либо
отрицается. Например, дано высказывание «Число 12 простое». Это ложное
высказывание. Построим его отрицание: «Неверно, что число 12 простое».
Получили истинное высказывание. Отрицание высказывания А обозначают ?
читают: «Не А» или «Неверно, что А».
Вообще, отрицанием высказывания А называется высказывание ?, которое истинно, если высказывание А ложно, и ложно, когда А истинно.
Также составные высказывания можно получить при помощи слов «если…, то…». Например: «Если я куплю билеты, то пойду в театр», «Если ученик
получил на экзамене положительную оценку, то он сдал этот экзамен».
Высказывания имеет форму «Если А, то В» и называется импликацией
высказываний А и В (от латинского слова implicatiomecho связывают).
Импликацию высказываний А и В записывают так: А ( В и читают «Если А, то
В». Высказывание А называют условие импликации, а высказывание В - ее
заключением.
Считают, что импликация А ( В истинна во всех случаях, кроме случая, когда А истинно, а В ложно.
Но существует еще и импликация обратная данной. Переставив местами
импликацию двух высказываний А ( В получим В ( А. Ее называют импликацией, обратной импликации А ( В. Например, если дана импликация «Если вам больше
14 лет, то вы имеете паспорт», то импликация, обратная данной, такова:
«Если вы имеете паспорт, то вам больше 14».
Рекомендуем скачать другие рефераты по теме: классы реферат, бесплатные конспекты.
Категории:
Предыдущая страница реферата | 1 2 3 4 5 6 7 8 9 10 11 | Следующая страница реферата