Развитие самостоятельности школьников при обучении математики
| Категория реферата: Рефераты по педагогике
| Теги реферата: диплом о высшем, зимой сочинение
| Добавил(а) на сайт: Stepashin.
Предыдущая страница реферата | 1 2 3 4 5 | Следующая страница реферата
На четвертом этапе основной формой является индивидуальная работа с учащимися, дифференцируемая с учетом познавательных интересов и потребностей и профессиональной ориентации каждого. Самостоятельная работа школьника на этом этапе работы носит поисково-исследовательский характер и требует творческих усилий. Учащиеся самостоятельно в течение сравнительно длительного срока решают задачи, сформулированные ими самими или выбранные из предложенных учителем. Помощь преподавателя заключается в проведении индивидуальных консультаций, в рекомендации соответствующей литературы, в организации обсуждения найденного учеником доказательства и т. п.
На этом этапе проводятся конкурсы по решению задач, самостоятельная
подготовка победителей школьной математической олимпиады к районной
(областной, республиканской) олимпиаде (под руководством учителя);
продолжается работа по самообучению.
Наиболее глубоко и полно система учебной работы по развитию самостоятельности и творческой активности школьников реализуется при изучении факультативных курсов по математике.
2. ОБУЧЕНИЕ ЧЕРЕЗ ЗАДАЧИ
Метод обучения математике через задачи базируется на следующих дидактических положениях:
1) Наилучший способ обучения учащихся, дающий им сознательные и прочные знания и обеспечивающий одновременное их умственное развитие, заключается в том, что перед учащимися ставятся последовательно одна за другой посильные теоретические и практические задачи, решение которых дает им новые знания.
2) Обучение на немногочисленных, но хорошо подобранных задачах, решаемых школьниками в основном самостоятельно, способствует вовлечению их в творческую исследовательскую работу, последовательно проводя через этапы научного поиска, развивает логическое мышление.
3) С помощью задач, последовательно связанных друг с другом, можно ознакомить учеников даже с довольно сложными математическими теориями.
4) Усвоение материала курса через последовательное решение учебных задач происходит в едином процессе приобретения новых знаний и их немедленного применения, что способствует развитию познавательной самостоятельности и творческой активности учащихся.
Можно выделить следующие виды обучения через задачи на внеурочных занятиях.
Теоретический материал изучаемого математического курса раскрывается конкретно-индуктивным путем. Учащиеся, решая самостоятельно подготовительные задачи, анализируя, сравнивая и обобщая результаты решений, делают индуктивные выводы. Способы решения конкретных задач таковы, что их можно применить при решении обобщенной задачи (теоремы), тем самым ученики готовятся к дедуктивным доказательствам, которые они в дальнейшем могут осуществить самостоятельно при выполнении нестандартных упражнений на применение теории и решение задач повышенной трудности.
Весь материал курса раскрывается через задачи в основном дедуктивным путем. Теоремы курса имеют вид задач. Полученные знания находят применение при решении творческих исследовательских задач.
Материал курса раскрывается через задачи комбинированным путем, т. е. как конкретно-индуктивным, так и дедуктивным. В курсе содержатся подготовительные, основные и вспомогательные задачи. Для индивидуальных заданий предусмотрены задачи повышенной трудности и творческие, исследовательские задачи.
Рассмотрим более подробно каждый из этих видов обучения.
Подготовительные задачи чаще всего располагаются в серии с нарастающей
трудностью. Схематически ее можно изобразить так: А1—А2—А3—...—Ап, где Аk
(k=1, 2, 3, .... n) — подготовительная задача, решение которой способствует
самостоятельному решению учеником задачи Ak+1.
Каждая подготовительная задача должна быть небольшой по объему
информации, доступной для самостоятельного решения учащимися. Особенно
важно это для первых задач серии, так как успех в решении одной задачи
стимулирует самостоятельную деятельность школьника при решении следующей.
Задачи подбираются средней трудности, чтобы быть доступными всем ученикам.
Если взять слишком легкие задачи, то у сильных учащихся пропадает интерес к
их решению. Слишком же трудные задачи исключают самостоятельность решения
для всех учащихся. При возникновении затруднений учителем должна быть
оказана индивидуальная помощь.
В ходе решения задач обязательно их письменное оформление, чтобы можно было, охватив решения всех задач серии, проследить пути к решению основной задачи-проблемы, сделать необходимые обобщения. Если первые задачи серии окажутся для какого-то ученика слишком легкими, он может по своему усмотрению начать письменное оформление решений с задачи Ak, т. е. с промежуточной задачи. Тогда для него подготовительная серия задач будет иметь вид Ak—Ak+1—...—An.
Решения задач обсуждаются коллективно, анализируются различные способы
решения, проводится обобщение полученных результатов, формулируется учебная
проблема и намечается способ ее решения. Всячески поощряется
самостоятельность суждений, отстаивание учащимися собственного мнения.
(Смотри приложение 2)
Идея использования вспомогательных задач возникла на основе наблюдений
психологов о том, что при решении сложной задачи учащиеся обычно ищут, под
какой из уже известных типов задач можно было бы ее подвести. При этом они, анализируя условие задачи, осуществляя поисковые пробы, пытались
воспользоваться такими данными, которые способствовали бы переносу уже
имеющегося в их опыте (полученном при решении ранее встречающихся задач)
общего или частного метода, способа или приема решения задач. То есть
способы решения одной задачи оказывают существенное влияние на
самостоятельные поиски решения другой.
Вспомогательные задачи являются своеобразными указаниями к
самостоятельной деятельности ученика при решении основной задачи. Они
отличаются от указаний и готовых решений, имеющихся в большинстве пособий
по математике для самостоятельной подготовки к конкурсным экзаменам, тем, что не содержат рецептов, не навязывают способ решения автора, не дают
готового решения. Указание (подсказка) во вспомогательной задаче
заключается в ее решении: нужно сначала самостоятельно решить
вспомогательную задачу, а затем обнаружить содержащуюся в ней подсказку.
Обычно для ученика одной вспомогательной задачи оказывается недостаточно.
Тогда дается вторая вспомогательная задача и т. п. Образуется серия
вспомогательных задач.
Схематично основная задача А вместе с серией вспомогательных задач A1,
A2, ..., An изображается так: А: A1 —A2 — ... —An.
Самостоятельная деятельность ученика начинается с решения задачи А. Если
он за определенное время не сможет решить ее, то приступает к решению
первой вспомогательной задачи А1: А—А1. В случае решения задачи А1 ученик
снова возвращается к задаче А: А1—А. Если задача А снова не решается, то он
обращается к задаче А2. Решив задачу A2, возвращается к задаче A и т. д.
Возможен случай, когда школьник не сможет решить вспомогательную задачу А1.
Тогда он приступает к решению задачи А2. Если и A2 не решается, то
переходит к задаче A3 и так до An. От задачи An ученик последовательно
возвращается к задаче
А: An —An-1 — ... —A1—A. Возможна и другая последовательность решения
задач, что можно изобразить схемами:
A —A1 — A—A2 —A — A3 —A или
A —A1 — A—A2 —A1 — A—A3 —A2 —A1—A и т. д.
Составление вспомогательных задач наталкивается на серьезные трудности.
Для решения задачи Л может соответствовать и другая серия вспомогательных
задач, отличная от указанной, например В1, В2, ..., Bk Трудность
заключается в отборе лучшей (оптимальной) серии для конкретного ученика.
Далее, серия может быть и нелинейна. Это получается тогда, когда для
решения задачи A нужно знать способы решения сразу двух (или нескольких)
задач. Схематическое изображение этой ситуации таково:
A:[pic]
Трудность заключается в том, что одна и та же серия вспомогательных задач для разных учащихся имеет различную эффективность: для одних серия слишком длинна (содержит много задач), для других коротка, одни и те же задачи для одних слишком легки, для других трудны и т. п. Кроме того, вспомогательные задачи навязывают ученику определенный путь решения. Но и при подсказке учителя также навязывается ученику способ решения, намеченный учителем.
Рекомендуем скачать другие рефераты по теме: сочинение 6 класс, реферати українською.
Категории:
Предыдущая страница реферата | 1 2 3 4 5 | Следующая страница реферата