Электрорадиоматериалы. Методические указания к лабораторным работам
| Категория реферата: Рефераты по радиоэлектронике
| Теги реферата: доклад по истории, рефераты
| Добавил(а) на сайт: Савватия.
Предыдущая страница реферата | 1 2 3 4 5 6 7 8 9 10 11 | Следующая страница реферата
1. Что называют сегнетоэлектриками? Какие материалы обладают сегнетоэлектрическими свойствами?
2. Что такое диэлектрическая проницаемость, как ее можно практически определить?
3. Почему диэлектрическая проницаемость сегнетоэлектриков значительно превышает проницаемость обычных диэлектриков и зависит от напряженности внешнего электрического поля?
4. В чем причина возникновения гистерезиса при поляризации сегнетоэлектриков?
5. Как происходит процесс поляризации сегнетоэлектриков?
6. Почему вольтамперная характеристика сегнетоэлектрических конденсаторов нелинейна?
7. Какими параметрами характеризуют потери мощности в диэлектриках?
8. Как и почему зависит диэлектрическая проницаемость сегнетоэлектриков от температуры?
9. Как получить на экране осциллографа кулон-вольтную характеристику?
10. Назовите области применения сегнетоэлектриков.
Работа 7. Исследование свойств ферромагнитных материалов
Цель работы – экспериментальное подтверждение основных теоретических положений, определяющих физические процессы, происходящие в ферромагнитных телах при их периодическом перемагничивании; приобретение практических навыков в определении потерь в ферромагнетике, их разделении, снятии основной кривой намагничивания B(H) и оценке магнитных характеристик материала.
1. Краткие сведения из теории
Ферромагнитные материалы (Fe, Ni, Co и их сплавы) обладают особыми магнитными свойствами: высокое значение относительной магнитной проницаемости и ее сильная зависимость от напряженности внешнего магнитного поля, при перемагничивании наблюдается магнитный гистерезис, обусловленный наличием доменов – областей спонтанной намагниченности.
Основной причиной магнитных свойств вещества являются внутренние скрытые формы движения электрических зарядов в его атомах – вращение электронов вокруг собственных осей (спиновый магнитный момент) и вокруг ядра (орбитальный магнитный момент). У ферромагнетиков даже при отсутствии внешнего магнитного поля имеются домены с параллельной или антипараллельной ориентацией спинов электронов. Такое вещество находится в состоянии спонтанного (самопроизвольного) намагничивания. В различных доменах эта ориентация различна. Если материал не подвергается воздействию внешнего магнитного поля, суммарный магнитный момент всех доменов и магнитный поток такого тела во внешнем пространстве равны нулю.
При намагничивании внешним магнитным полем происходит поворот векторов магнитных моментов доменов в направлении поля и смещение границ доменов. С увеличением напряженности поля этот процесс замедляется (явление насыщения).
При периодическом перемагничивании ферромагнитного материала наблюдается явление магнитного гистерезиса, т. е. отставание изменения магнитной индукции от изменения напряженности поля. На рис. 7.1 показаны гистерезисные диаграммы при различных предельных значениях напряженности внешнего магнитного поля. Кривая, проходящая через вершины этих диаграмм, называется основной кривой намагничивания B=f(H). Гистерезисный цикл, при котором достигается насыщение ферромагнитного материала, называется предельным. По нему определяется остаточная индукция Вr (при H = 0) и коэрцитивная сила Нc (при B = 0).
Способность материала к намагничиванию характеризуется абсолютной магнитной проницаемостью ( = В/Н .
(7.1)
На рис. 7.2 показана основная кривая намагничивания B=(H) и зависимость
абсолютной магнитной проницаемости от напряженности внешнего магнитного
поля. При определенной величине напряженности ( достигает максимума. Точка
а, характеризующая этот режим, соответствует касательной Оа, проведенной к
основной кривой намагничивания из начала координат. Проницаемость, определенную в очень слабых полях, называют начальной ((н).
Одновременному намагничиванию ферромагнитных материалов постоянным и
переменным полем малой амплитуды Нт соответствует частный гистерезисный
цикл с вершинами /—2, лежащими на основной кривой намагничивания (см. рис.
7.2). При этом реверсивная (обратимая) проницаемость определяется
положением вершин этого цикла:
[pic] где МB, МH – масштабы по осям координат, ( – угол наклона к оси абсцисс прямой, соединяющей вершины частного гистерезисного цикла. Аналогично определяется дифференциальная магнитная проницаемость: [pic]
(7.2) где ( – угол наклона касательной к основной кривой намагничивания в искомой точке.
Для всех упомянутых проницаемостей чаще всего определяется их относительные значения
[pic] [pic] [pic] (7.3) где (о = 4((10-7 Гн/м – магнитная постоянная.
Материалы с узкой петлей гистерезиса (Hc ( 1 кА/м) называют магнитомягкими, материалы с широкой петлей – магнитотвердыми.
При перемагничивании ферромагнитных материалов в них возникают потери на гистерезис и вихревые токи. При постоянной амплитуде индукции (Bm = const) потери на гистерезис пропорциональны частоте, а потери на вихревые токи – квадрату частоты: [pic] [pic] Измерив в этих условиях суммарные магнитные потери Pм1 и Рм2 при двух различных частотах, можно определить постоянные
[pic] [pic] (7.4)
Для выполнения условия Вm = сопst необходимо действующее значение напряжения намагничивающей катушки изменять пропорционально частоте (U1/f = const).
Суммарные магнитные потери могут быть определены по площади [pic] динамической вебер-амперной диаграммы ((i):
[pic] (7.5) где Mi, M( – масштабы, принятые по осям координат.
Параллельная ориентация спинов в магнитных доменах имеет место только ниже определенной для данного ферромагнетика температуры – точки Кюри. При превышении этой температуры спонтанная намагниченность исчезает, и магнитная проницаемость резко падает.
2. Описание экспериментальной установки
Схема установки для исследования свойств ферромагнитных материалов приведена на рис. 7.3.
Схема питается от задающего генератора. Исследуемый ферромагнетик
представляет собой тороидальный магнитопровод с двумя обмотками.
Последовательно с намагничивающей обмоткой w1 включено небольшое
сопротивление R1, напряжение на котором, пропорциональное току i1, подается
на горизонтальные пластины осциллографа и на вольтметр V1. На зажимы
измерительной обмотки w2 включена интегрирующая цепочка с большим
сопротивлением R2 и большой емкостью С. В схеме выбрано [pic]поэтому
[pic] (7.6) где S – сечение сердечника, kо – постоянная, (1 – потокосцепление обмотки w1.
Рекомендуем скачать другие рефераты по теме: реферати, шпори на телефон, тезис.
Категории:
Предыдущая страница реферата | 1 2 3 4 5 6 7 8 9 10 11 | Следующая страница реферата