Программная реализация модального управления для линейных стационарных систем
| Категория реферата: Рефераты по радиоэлектронике
| Теги реферата: шпаргалки по педагогике, судебная реферат
| Добавил(а) на сайт: Anzhelika.
Предыдущая страница реферата | 1 2 3 4 5 6 7 8 9 10 11 | Следующая страница реферата
Алгоритм:
1. Для исходной системы (1) составляем матрицу управляемости
[pic]
2. Обращаем матрицу [pic], т.е. вычисляем [pic].
Если [pic] не существует (т.е. матрица [pic] - вырожденная), то прекращаем вычисления: полное управление корнями характеристического уравнения (5) не возможно.
3. Вычисляем матрицу [pic]
4. Составляем матрицу
[pic]
5. Вычисляем матрицу, обратную матрице [pic], т.е. [pic]
6. Вычисляем матрицу [pic] - матрицу [pic] в канонической форме фазовой переменной:
[pic] где [pic]- коэффициенты характеристического уравнения (4).
Матрица [pic] в канонической форме имеет вид
[pic]
7. Составляем вектор [pic] , элементам которого являются коэффициенты характеристического уравнения (4), т.е. [pic], [pic], где [pic] - элементы матрицы [pic].
8. Находим коэффициенты характеристического уравнения (5) (см. пояснения) и составляем из них вектор [pic].
9. Вычисляем вектор [pic].
[pic] - искомая матрица обратной связи системы (3), но она вычислена для системы, матрицы которой заданы в канонической форме фазовой переменной
([pic] и [pic]).
10. Для исходной системы (3) матрица обратной связи получается по формуле
[pic]
Матрица [pic] - искомая матрица обратной связи.
Пояснения к алгоритму:
В данной работе рассматривается случай, когда управление единственно и
информация о переменных состояния полная. Задача модального управления
тогда наиболее просто решается, если уравнения объекта заданы в
канонической форме фазовой переменной.
Так как управление выбрано в виде линейной функции переменных состояния
[pic], где [pic] является матрицей строкой [pic]. В таком случае уравнение
замкнутой системы приобретает вид [pic]. Здесь
[pic]
[pic]
Характеристическое уравнение такой замкнутой системы будет следующим
[pic]
Поскольку каждый коэффициент матрицы обратной связи [pic] входит только в
один коэффициент характеристического уравнения, то очевидно, что выбором
коэффициентов [pic] можно получить любые коэффициенты характеристического
уравнения, а значит и любое расположение корней.
Если же желаемое характеристическое уравнение имеет вид
[pic], то коэффициенты матрицы обратной связи вычисляются с помощью соотношений:
[pic]
Если при наличии одного управления нормальные уравнения объекта заданы не
в канонической форме (что наиболее вероятно), то, в соответствии с пунктами
№1-6 алгоритма, от исходной формы с помощью преобразования [pic] или [pic]
нужно перейти к уравнению [pic] в указанной канонической форме.
Управление возможно, если выполняется условие полной управляемости (ранг
матрицы управляемости M должен быть равен n). В алгоритме об управляемости
системы судится по существованию матрицы [pic]: если она существует, то
ранг матрицы равен ее порядку (n). Для объекта управления с единственным
управлением матрица [pic] оказывается также единственной.
Для нахождения коэффициентов [pic] характеристического уравнения (5), в
работе используется соотношения между корнями [pic] и коэффициентами
[pic] линейного алгебраического уравнения степени n:
[pic], (k = 1, 2, ... , n) где многочлены [pic]- элементарные симметрические функции, определяемые следующим образом:
[pic],
[pic],
[pic],
...
[pic] где Sk - сумма всех [pic] произведений, каждое из которых содержит k сомножителей xj с несовпадающими коэффициентами.
Программная реализация алгоритма.
Текст программной реализации приведен в ПРИЛОЖЕНИИ №1. Вот несколько
кратких пояснений.
. Программа написана на языке Object Pascal при помощи средств Delphi 2.0, и состоит из следующих основных файлов:
KursovayaWork.dpr
MainUnit.pas
SubUnit.pas
Matrix.pas
Operates.pas
Рекомендуем скачать другие рефераты по теме: виленкин математика 6 класс решебник, шпора на пятке лечение, дипломная работа формирование.
Категории:
Предыдущая страница реферата | 1 2 3 4 5 6 7 8 9 10 11 | Следующая страница реферата