Разработка логической схемы управления двустворчатых ворот судоходного шлюза
| Категория реферата: Рефераты по схемотехнике
| Теги реферата: шпоры, доклад по обж
| Добавил(а) на сайт: Поликарп.
Предыдущая страница реферата | 12 13 14 15 16 17 18 19 20 21 22 | Следующая страница реферата
КМ1, КМ2 - оперативные контакты двигателей насосов;
KYZ1, KYZ2 - контакторы электромагнитов золотников управления закрытием ворот;
KYO1, KYO2 - контакторы электромагнитов золотников управления открытием ворот;
YH, YZ, YO - электромагниты управления насосами и золотниками управления открытием и закрытием ворот. Как видно из схем и состава оборудования, работа данного привода аналогична работе привода двустворчатых ворот с асинхронными двигателями.
Работу гидропередачи при заданной последовательности операции легко проследить. Наличие в последней схеме ( смотри рисунок 14 ) электромагнитов управления подачи насосов YH1 и YH2 допускает при необходимости получение переменной подачи, а значит, и изменение скорости движения створок, например при створении ворот в операции закрытия и входе их в ниши в операции закрытия. Для этого в цепи YH1 и YH2 должны быть введены соответствующие командные устройства.
3.4. Электропривод двустворчатых ворот с тормозным генератором.
Рассмотренная схема двустворчатых ворот при их закрытии работает на смягченных характеристиках и в результате колебаний скорости не обеспечивает правильного створения ворот при различных изменения нагрузки на левую и правую створки из-за ветра и волновых явлении. Кроме того, вследствие сравнительно высокой скорости створок при срабатывании тормозов в конце операции раньше времени при закрытии ворот остается большая щель, а при срабатывании с опозданием имеет место удар створок.
Отмеченные недостатки, если большая часть операции будет происходить на жестких механических характеристиках работы электропривода, обеспечивающих сохранение скорости створок при колебаниях нагрузки, и значительным уменьшением ее в конце операции перед срабатыванием тормозов. Такие характеристики можно получить в системе с тормозным генератором, включаемый в конце операции для получения малой скорости привода.
Тормозной генератор может быть отдельной электрической машиной постоянного или переменного тока, навешенной на вал приводного привода и являющийся для него дополнительной нагрузкой. Отечественной промышленностью выпускаются асинхронные двигатели с встроенными тормозными генераторами, т. е. выполненными в едином корпусе.
Механическая характеристика такого двигателя с включенным генератором представляет собой кривую, полученную при различных угловых скоростях.
На (рисунке 30) приведены механические характеристики асинхронного двигателя ( кривая 1 ), тормозного генератора переменного тока ( кривая 2
) и результирующая характеристика при включении обеих машин ( кривая 3 ).
Изменения сопротивления цепи ротора асинхронного двигателя или ток возбуждения тормозного генератора, можно получить различные по жесткости и пограничной скорости результирующие характеристики.
Принципиальная схема привода с тормозным генератором отличается то рассмотренной в предыдущем параграфе только цепями управления и поэтому здесь не приводится.
3.5. Электропривод с тиристорным управлением. Как отмечалось, в электроприводах гидротехнических сооружений стали находить применение полупроводниковые силовые и оперативные элементы и устройства. Так, например, для управления асинхронными двигателями и регулирования их частоты вращения в приводах опдъемно-опускных ворот ( затворов ) и двустворчатых ворот используются тиристерные преобразователи частоты ( ТПЧ
), тиристорные станции управления и регулирования ( ТСУР ) и пускорегулирующие безконтактные устройства ( ПРБУ ).
Принципиальная схема силовой части электропривода с ПРБУ и векторная диаграмма э.д.с. работы системы приведены на (рисунке 31), а и б.
Пускорегулирующее бесконтактное устройство состоит из ревесного бесконтактное устройство состоит из реверсного безконтактного коммутатора
БК, блока динамического торможения БДТ, асинхронного вентельного каскада
АВК, сглаживающих реакторов L и блоков управления и защиты ( последние на схеме не показаны ). Безконтактный коммутатор состоит из четырех силовых тиристорных блоков, в каждый из которых входят по два встречно-параллельно включенных тиристора. Два блока коммутатора служат для включения двигателя в прямом направлении вращения, а два других - в обратном. Третья фаза двигателя включенна в сеть напрямую ( не коммутируется ). Блок динамического торможения тиристорный работает совместно с одним плечем тиристорного блока коммутатора, которое обеспечивает однополупериодный выпрямленный ток для динамического торможения. Блок динамического торможения состоит из симметричного тиристора V1, шунтирующего неработающую фазу двигателя, и рабочего тиристора V2, шунтирующего две другие фазы при непроводящем полупериоде работы коммутатора в режиме торможения.
Асинхронно-вентильный каскад включает асинхронный двигатель с фазным ротором М, выпрямитель U, инвертор И, ведомый сетью, и сглаживающий дроссель L. Выпрямитель собран из силовых неуправляемых вентильных блоков по мостовой схеме, но из силовых управляемых ( тиристорных ) блоков.
Принцип действия ПРБУ основан на работе асинхронного вентильного каскада со звеном постоянного тока. Регулирование частоты вращения привода здесь обеспечивается введением добавочного э.д.с. в цепь ротора. Как видно из векторной диаграммы, при работе вентильного каскада введение в цепь выпрямленного тока ротора Ip внешней электродвижущей силы Еи, направленной навстречу току, меняет значение результирующей э.д.с. ротора Ер, а следовательно, тока и угла сдвига между током и э.д.с. Внешняя электродвижущая сила, создаваемая инвертором, направленная навстречу току, и, следовательно, ее вектор сдвинут относительно основной э.д.с. ротора на угол ( 180 - f ). Внешнюю э.д.с. возможно изменить выбором угла опережения открывания тиристоров инвертора, обеспечивая изменение результирующей э.д.с. тока ротора и угла сдвига между ними. Изменение тока ротора вызовет изменение вращающего момента электродвигателя, а при постоянном моменте сопротивления и изменение частоты вращения двигателя.
При замкнутой системе регулирования в случае отрицательной обратной связи по частоте вращения, управляя углом опережения открывания тиристоров, в такой схеме обеспечивается поддержанием постоянной частоты вращения при изменении момента сопротивления на валу. Механические характеристики в рабочем диапазоне нагрузки при этом оказываются такими же, как и в системе Г-Д. Диапазон регулирования достигает 20:1 и выше.
Первый опыт применения ПРБУ в приводах подъемно-опускных ворот ( затворов
) и двустворчатых ворот показал, что такие системы обладают хорошей регулирующей способностью и высокой надежностью и экономичностью, однако имеют сложную систему управления.
4. БЕСКОНТАКТНЫЕ АППАРАТЫ И СТАНЦИИ УПРАВЛЕНИЯ.
Коммутационные контактные аппараты имеют низкую надежность и сдерживают дальнейшее развитие автоматизированных электроприводов. В современных системах широко применяются бесконтактные силовые и оперативные устройства, не разрывающие электрических цепей, а запирающие и отпирающие их. В качестве элементной базы таких устройств используют управляемые вентили ( триоды и тиристоры ), магнитные усилители, бесконтактные сельсины, бесконтактные емкостные и индуктивные датчики.
Принцип действия большинства из них основан на изменение включаемого в цепь электрического тока сопротивления, значение которого при опредиленных условиях может изменяться практически от нуля ( открытое состояние ) до бесконечности ( закрытое состояние ).
Механизм работы управляемого вентеля в п. 14 на примере тиристора с выходным параметром в виде изменяющегося напряжения, подводимого к двигателю и имеющегося в крайних условиях открытое и закрытое состояние.
Бесконтактные аппараты управления долговечны из - за отсутствия механических контактов, обладают высоким быстродействием, нечуствительны к изменениям характеристик окружающей среды, имеют низки массогабаритные показатели и эксплутационные затраты.
Бесконтактные устройства являются наиболее совершенными аппаратами для построения функциональной части схем автоматического управления электроприводами. При разработке создании сложных схем управления электроприводов, таких как приводы основных механизмов шлюзов и судов технического флота, бесконтактные устройства предусматривают в качестве контактных коммутационных аппаратов, способных выполнять отдельные операции в определенной ( логической ) последовательности. Поэтому их называют логическими элементами.
Бесконтактные логические элементы, как правило, строятся на транзисторных, диодных и магнитных элементах в виде прямоугольных таблеток с несколькими входами и выходами и схемами, позволяющими реализовать отдельные логические функции.
Выходные сигналы на логические элементы могут подаваться от бесконтактных и контактных датчиков и командоаппаратов.
Схемы на бесконтактных логических элементах могут осуществлять все электрические блокировки и защиты.
Рекомендуем скачать другие рефераты по теме: рассказы, сообщение, курсовые работы бесплатно.
Категории:
Предыдущая страница реферата | 12 13 14 15 16 17 18 19 20 21 22 | Следующая страница реферата