Ряды динамики
| Категория реферата: Рефераты по статистике
| Теги реферата: реферат основные, реферат на экономическую тему
| Добавил(а) на сайт: Юдицкий.
Предыдущая страница реферата | 1 2 3 4 5 6 7 8 9 10 11 | Следующая страница реферата
Проверка на наличие тренда в ряду динамики может быть осуществлена по нескольким критериям .
1) Метод средних . Изучаемый ряд динамики разбивается на несколько интервалов (обычно на два) , для каждого из которых определяется средняя величина ([pic]) . Выдвигается гипотеза о существенном различии средних . Если эта гипотеза принимается , то признается наличие тренда .
2) Фазочастотный критерий знаков первой разности (критерий Валлиса и
Мура) . Суть его заключается в следующем : наличие тренда в динамическом ряду утверждается в том случае , если этот ряд не содержит либо содержит в приемлемом количестве фазы – изменение знака разности первого порядка (абсолютного цепного прироста).
3) Критерий Кокса и Стюарта . Весь анализируемый ряд динамики разбивают на три равные по числу уровней группы (в том случае , когда число уровней ряда не делится на три , недостающие уровни надо добавить) и сравнивают между собой уровни первой и последней групп .
4) Метод серий . По этому способу каждый конкретный уровень временного ряда считается принадлежащим к одному из двух типов : например , если уровень ряда меньше медианного значения , то считается , что он имеет тип А , в противном случае – тип В. Теперь последовательность уровней выступает как последовательность типов . В образовавшейся последовательности типов определяется число серий (серия – любая последовательность элементов одинакового типа , с обоих сторон граничащая с элементами другого типа).
Если в ряду динамики общая тенденция к росту или снижению отсутствует
, то количество серий является случайной величиной , распределенной
приближенно по нормальному закону (для n > 10) . Следовательно , если
закономерности в изменениях уровней нет , то случайная величина R
оказывается в доверительном интервале
[pic].
Параметр t назначается в соответствии с принятым уровнем доверительной вероятности Р.
Среднее число серий вычисляется по формуле 22 :
[pic].
(22)
Среднее квадратическое отклонение числа серий вычисляется по формуле
23 :
[pic] .
(23)
здесь n -- число уровней ряда .
Выражение для доверительного интервала приобретает вид
[pic]
Полученные границы доверительного интервала округляют до целых чисел , уменьшая нижнюю границу и увеличивая верхнюю .
Непосредственное выделение тренда может быть произведено тремя методами .
1) Укрупнение интервалов . Ряд динамики разделяют на некоторое достаточно большое число равных интервалов . Если средние уровни по интервалам не позволяют увидеть тенденцию развития явления , переходят к расчету уровней за большие промежутки времени , увеличивая длину каждого интервала (одновременно уменьшается количество интервалов) .
2) Скользящая средняя . В этом методе исходные уровни ряда заменяются средними величинами , которые получают из данного уровня и нескольких симметрично его окружающих . Целое число уровней , по которым рассчитывается среднее значение , называют интервалом сглаживания . Интервал может быть нечетным (3,5,7 и т.д. точек) или четным (2,4,6 и т.д. точек).
При нечетном сглаживании полученное среднее арифметическое значение
закрепляют за серединой расчетного интервала , при четном это делать нельзя
. Поэтому при обработке ряда четными интервалами их искусственно делают
нечетными , для чего образуют ближайший больший нечетный интервал , но из
крайних его уровней берут только 50%.
Недостаток методики сглаживания скользящими средними состоит в
условности определения сглаженных уровней для точек в начале и конце ряда .
Получают их специальными приемами – расчетом средней арифметической
взвешенной . Так , при сглаживании по трем точкам выровненное значение в
начале ряда рассчитывается по формуле 24 :
[pic]. (24)
Рекомендуем скачать другие рефераты по теме: мировая экономика, качество реферат, реферати курсові.
Категории:
Предыдущая страница реферата | 1 2 3 4 5 6 7 8 9 10 11 | Следующая страница реферата