Безкорпусная герметизация полупроводниковых приборов
| Категория реферата: Рефераты по технологии
| Теги реферата: доклад по биологии, реферат по математиці
| Добавил(а) на сайт: Ivannikov.
Предыдущая страница реферата | 2 3 4 5 6 7 8 9 10 11 12 | Следующая страница реферата
В последнее время широкое применение получил метод силанирования, позволяющий добиться более надёжной защиты поверхности p-n-переходов и стабилизации электрических параметров . При силанировании на поверхности р- п-перехода получают тонкие плёнки , которые обладают высокой влаго- и газонепроницаемостью, инвертностью к различным химическим реагентам., высокой адгезионной способностью. Термостойкостью (до 300 С) – главная отличительная особенность плёнок. Наиболее перспективными являются диметил- и триметилземещённый силан. Недостатком метилзамещённых силанов являются выделение при силанировании хлористого водорода, который взаимодействует с элементами, образующими р-п-переход, например алюминий. Образующийся хлористый алюминий очень гидроскопичен и может шунтировать р-п-переход.
При на несении силановых плёнок важными факторами являются
кислотность среды и чистота исходного продукта, от которых зависят
молекулярный вес силана и однородность его химического состава. Существует
ряд способов нанесения силановых плёнок (при условии предварительного
увлажнения поверхности р-п-переходов):
1. погружение в жидкие метилхлорсиланы;
2. погружение в растворы метилхлорсиланов или их смеси;
3. выдержка в парах силанов или их смесей.
Первый способ даёт лучшие результаты, но при его использовании
создаётся высокая концентрация хлористого водорода, который интенсивно
разрушает алюминий. Этот же недостаток неизбежен и при силанировании из
газовой фазы, что отрицательно влияет на сплавные кремневые приборы, имеющие алюминиевые электроды. Используя способ силанирования р-п-переходов
поргружением в растворы, можно устраивать некоторые недостатки двух других
способов. Этот способ позволяет:
. регулировать концентрацию метилхлорсиланов;
. удалять продукты реакции из сферы реакции, подбирая соответствующий растворитель;
. улучшать технологичность процесса, поскольку есть возможность вводить добавки, нейтрализующие соляную кислоту;
. создавать гомогенную среду для поликонденсации плёнки, так как в растворитель переходят продукты гидролиза.
В качестве растворителей обычно применяют ксилиол, толуол и бензол.
Большое значение при создании силановой плёнки имеет толщина водного
покрытия и стабильность давления паров воды над увлажняемой поверхностью.
Кроме того, не меньшее влияние на толщину плёнки имеет структура
поверхности, её химический состав, степень гидрофильность.
Силанирование не только закрепляет существующую структуру поверхности, но и в некоторых случаях улучшает электрические параметры переходов, поскольку при нанесении плёнок устраняются структурные дефекты поверхности..
Технологический процесс нанесения защитной силановой плёнки состоит в следующем. После травления в кислотном травителе и промывки в деонизированной воде кристаллы с р-п-переходами погружают в жидкость органозамещённого силана на время, в течение которого происходит полное смачивание поверхности. Обычно используют смесь метилхлорсилана и двух частей триметилхлорсилана. Реакция этой смеси в влагой, которая имеется на поверхности кремниевого кристалла, вызывает разложение соляной кислоты и образование тонкой защитной плёнки.
Разновидностью процесса силанирования является получение защитных
плёнок пиролитическим осаждением органокремниевых соединений. Кристаллы
помещают в молибденовую лодочку, расположенную на нагревателе в кварцевой
реакционной трубе, через которую пропускают гелий, предварительно
насыщенный тетраэтоксимоносиланом. Температура нагревателя поддерживается
равной 800 с. Скорость пропускания газовой смеси над пластинами с р-п-
переходами выбирают от 50 до 60 м/ч. Толщина изолирующей плёнки 25 000 А.
Скорость выращивания плёнок 800 А/мин.
Затем наносят второй слой изоляционной плёнки, пропуская гелий через сосуд , содержащий жидкий этилтриэтоксисилан. Смесь подают через реакционную трубу в течение 5 минут при температуре 800 С. Толщина второго защитного покрытия 2000 А. Скорость выращивания второго слоя выбирают равной 400 А/мин.
Таким образом, одним из основных преимуществ метода силанирования перед методом защиты переходов лаками и эмалями является возможность химического связывания защитной плёнки с поверхностью р-п-перехода. Это обеспечивает не только надёжную адгезию, но и позволяет устранить некоторые структурные нарушения поверхности, что способствует заметному улучшению электрических параметров переходов.
Защита поверхности р-п-переходов окислением.
Окисление считается в настоящее время наиболее перспективным методом
защиты поверхности р-п-переходов. Реальная поверхность германия и кремния
после травления при выдержке на воздухе покрывается плёнкой окисла, однако, несмотря на то что окислы германия и кремния обладают хорошими
диэлектрическими свойствами и потенциально пригодны для защиты поверхности
переходов, образующаяся плёнка очень чувствительна к окружающей среде и не
может служить пассивирующим покрытием. Для защиты могут быть использованы
только достаточно толстые окисные плёнки, получаемые выращиванием. Задача
получения стабильной плёнки двуокиси германия является достаточно сложной.
Более просто окисные плёнки получают на кремнии.
Известны четыре основных способа выращивания окисных плёнок на
кремниевых пластинах и кристаллах для стабилизации их поверхностных
свойств:
1. термическое выращивание;
2. пиролитическое окосление;
3. химическое окисление;
4. анодное окисление;
Термическое выращивание. Выращивают окиную плёнку на поверхности кремния чаще всего методом открытой трубы. Тщательно очищенный азот, увлажнённый водяными парами, прорускают через деионизиванную воду, откуда он попадает в трубу, где в высокотемпературной зоне печи (1100–1300 С) находятся пластины кремния. Для создания совершённой плёнки двуокиси пластины перед окислением механически или химически полируют.
В другом случае окисление ведут в атмосфере ( чаще также в потоке) чистого кислорода, специально очищенного атмосферного воздуха или водяного пара. На рис показана зависимость толщины плёнки от h скорости роста плёнки SiO2 от температуры. Как видно, она имеет экспоненциальный характер.
Рост плёнки двуокиси кремния в различных условиях описывается выражением:
hm=kt,
где h – толщина плёнки; t – время; k– константа, определяемая давлением и температурой; m– показатель степени;
Если окисление ведут в чистом кислороде или парах воды, m=2. Плёнка, выращенная в кислороде, имеет более совершенную структуру.
Часто используют окисление в три стадии: в осушенном, в увлажненном ( для ускорения процесса) и вновь в осушенном кислороде. Однако предельная толщина термически выращенной окисной плёнки не превышает 1,5 мкм. Более толстые плёнки имеют трещины. Для практических целей используют плёнки двуокиси кремния толщиной 0,2–1,2 мкм.
При использовании водяного пара под давлением, скорость выращивания окисной плёнки возрастает. После травления и промывки кристаллы с р-п- переходами обрабатывают в течение 15 минут в азотной кислоте при температуре 100 С и сушат на воздухе. Затем кристаллы окисляют при температуре 650 С и давлении водяных паров 50 ат в течение 2 часов. В результате на поверхности пластины образуется защитная окисная плёнка толщиной 3000 А.
Получать окисную плёнку в среде водяного пара можно при температуре
1200 С в течение 5 часов при атмосферном давлении . После оксидирования
водяной пар заменяют инертным газом, который пропускают через пластины в
течении 1 часа при той же температуре. Плёнку получают толщиной 20 000А.
Пиролитическое окисление. Описанная технология создания защитных
окисных плёнок непригодна для германия, так как плёнка двуокиси германия
нестабильна и не может служить надёжной защитой против диффузии. Уже при
700 С двуокись германия в инертной или восстановительной среде реагирует с
объёмом , образуя летучую моноокись.
Нагрев в окислительной среде при температуре 700 С вызывает разрушение пленки Ge2O. Для защиты р-п-переходов на германиевых пластинах выращивают плёнки окиси кремния. Широкое распространение получили защитные плёнки окиси кремния, выращиваемые на германии методом термораспада кремнийогранических соединений. Покрытие, образующееся при пиролитическом разложении органооксисиланов, наносится очень просто, обладает хорошей механической стойкостью и легко удаляется при травлении в плавиковой кислоте.
Поток очищенного аргона 1 проходит через печь. Когда температура поднимается до 700 С аргон пропускают через органооксисилан 2, пары которого разлагаются в рабочей камере 3, и на пластинах 5 германия осаждается слой двуокиси кремния. Когда требуемая толщина плёнки достигнута, вновь пускают чистый аргон и отключают печи. При 200 С пластины вынимают.
Эту же технология можно использовать для защиты электронно-дырочных переходов на пластинах арсенида галлия.
Рекомендуем скачать другие рефераты по теме: архитектура реферат, проблема дипломной работы, физика и техника.
Категории:
Предыдущая страница реферата | 2 3 4 5 6 7 8 9 10 11 12 | Следующая страница реферата