Измерение параметров лазеров
| Категория реферата: Рефераты по технологии
| Теги реферата: шпори для студентів, реферат на тему закон
| Добавил(а) на сайт: Ида.
Предыдущая страница реферата | 1 2 3 4 5 6 7 8 9 | Следующая страница реферата
In=I0(1-()2((2(n-1)
(1.18)
где IO — интенсивность пучка, падающего на пластину. Таким образом, на пленке P получается несколько изображений пятна с разной экспозицией, из которых после обработки денситограмм можно достаточно точно определить диаметр пятна на заданном уровне интенсивности.
Для более оперативного получения данных, а также для преобразования
излучения в видимую область спектра используют ЭОПы, видиконы и диссекторы, которые позволяют наблюдать или фотографировать объекты в ближних ИК (до
1.5 мкм), видимых, УФ или рентгеновских лучах.
С появлением многоканальных мозаичных приемников излучения задача
определения относительного распределения плотности энергии или мощности
значительно упростилась, а скорость получения результатов измерений
существенно повысилась. Параллельный принцип измерения многоканальных ПИП
локальных плотностей мощности и энергии позволяет проводить анализ
импульсного и нестабильного во времени в и пространстве непрерывного
излучения с выдачей результатов непосредственно на экран дисплея ЭВМ или
ЦПУ.
Большинство преобразователей имеют до 100 каналов измерения с размером
одного элемента от 5х5 до 10х10 мм2. Матричные ПИП основаны на различных
принципах действия (термоэлектрические калориметры, пироэлектрические и
полупроводниковые приборы) и могут перекрывать видимую и ИК области спектра
(= 0.4…25 мкм).
Современные фотодиодные, фоторезистивные и фототранзисторные матрицы состоят из нескольких десятков тысяч элементов с шагом нескольких десятков микрометров и общей площадью до 15х15 мм2. Время опроса таких матриц составляет доли миллисекунд.
Автоматизированная математическая обработка информации с мозаичных приемников обеспечивает вычисление энергетической расходимости (не только относительно точки с максимальной интенсивностью, но и относительно центра тяжести пятна или геометрического центра); выделение изоуровней; обработку фокальных пятен неправильной формы; коррекцию искажений измерительного тракта, включая возможность индивидуальной коррекции неравномерности чувствительности отдельного канала; определение оси диаграммы направленности, ее дрейф в течение времени и т.д.
В то же время многоканальные мозаичные ПИП обладают все еще низкой разрешающей способностью (до 10 лин/мм), повышенной общей плотностью системы и стоимостью.
2 Измерение поляризации лазерного пучка
В силу специфики процесса генерации в лазерах (основанного на
стимулированном испускании активной средой когерентных фотонов) получаемое
таким путем излучение всегда должно обладать 100 %-ной элементарной
(линейной или круговой) поляризацией. Вид последней определяется
особенностями используемой (в лазере) активной среды — поляризацией ее
спонтанного излучения, служащего "затравкой" при разгорании генерации, и
величиной коэффициента усиления для элементарных поляризаций; существенное
значение в лазерах с резонатором мыв т поляризационная анизотропия
последнего, т.е. соотношение потерь для различных элементарных поляризаций.
В подавляющем большинстве серийных лазеров генерируется только линейно
поляризованное излучение, причем почти всегда плоскость поляризации
однозначно определяется либо поляризацией спонтанного излучения активной
среды (например, степень поляризации основной R1 линии в стержнях рубина с
90( ориентацией кристаллографической оси составляет 80%), либо
брюстеровскими поверхностями (например, брюстеровскими окнами в
газоразрядных кюветах, брюстеровскими торцами лазерных стержней, установленными под углом Брюстера модуляторами, затворами и т.п.). Лишь в
лазерах на неодимовом стекле при отсутствии поляризационной анизотропии
генерируется линейно поляризованное излучение, плоскость поляризации
которого хаотически, через время порядка (t (время развития генерации),
"перескакивает" после того, как "съедена" инверсная населенность с
соответствующей поляризацией.
С другой стороны, различные дефекты активной среды и особенности
используемого оптического резонатора могут изменять состояние поляризации
лазерного пучка, в результате чего в некоторых случаях необходимо его
исследование; это характерно, например, при использовании поляризационной
(главным образом, электрооптической) модуляции и в некоторых других
случаях. Перечислим (в порядке нарастания "сложности") возможные
"элементарные" состояния поляризации:
1. Линейная поляризация — характеризуется только положением плоскости поляризации — углом ( с (произвольной) осью x , перпендикулярной направлению распространения света z;
2. Круговая поляризация — характеризуется только направлением вращения конца проекции вектора Е на плоскость xy (перпендикулярную направлению распространения z) — право- и левоциркулярно поляризованное излучение; отметим, что круговая поляризация может трактоваться как совокупность двух взаимно ортогональных линейно поляризованных лучков равной интенсивности, колебания в которых сдвинуты соответственно на ((/4 (или на угол (=(((();
3. Эллиптически поляризованный свет является наиболее общим случаем элементарной поляризации и определяется уже тремя параметрами: углом плоскости большой оси (преимущественного направления поляризации) с осью x, т.е. углом (, эллиптичностью (, характеризующей соотношение напряженности линейно (и ортогонально) поляризованного света меньшей интенсивности к большей, и направлением вращения (правое или левое, как для циркулярно поляризованного света); в другой трактовке эллиптически поляризованный свет есть совокупность циркулярно поляризованного излучения и (когерентного с одной из его составляющих) линейно поляризованной добавки, плоскость поляризации которой расположена под углом ( .
Таким образом, все "элементарные" состояния поляризации могут быть получены из двух линейно поляризованных во взаимно перпендикулярных плоскостях излучений с амплитудами Аx и AY и разностью фаз (. Стоксом были введены четыре параметра
[pic], [pic] , [pic] , [pic] , полностью определяющем состояние поляризации монохроматического пучка; [pic] прямо пропорциональный полной интенсивности поляризованного пучка, положение преимущественной (линейной) поляризации (положение большой оси а эллипса) (=0.5arctg(s2/s1), угол эллиптичности [pic] (при этом ((((((( соответствует правая поляризация, а (-(((((((( — левая) и сдвиг фаз (=(x-(y=arctg(s2/s3).
Хотя состояние поляризации любой волны, не содержащей
неполяризованного света([pic]) можно представить точкой в трехкоординатном
(декартовом) пространстве параметров Стокса S1, S2, S3, более наглядным
является аналогичное представление на сфере Пуанкаре, где в полярной
системе координат на сфере радиуса [pic] наносится точка Р1 с угловыми
координатами (x и (z=((((((((. Тогда экватору соответствуют все возможные
состояния линейно поляризованного света, северному полюсу — правая, а
южному — левая циркулярная поляризация. При этом все северное полушарие
соответствует правой эллиптической поляризации, а южное — левой. В случае
не полностью поляризованного света соответствующая ему точка P лежит на
продолжении радиуса OP1 на расстоянии [pic], а для учета неполной
поляризации вводится степень поляризации [pic], равная отношению
поляризованной интенсивности к полной, т.е. p=Iполяр/I.
Сферу Пуанкаре можно использовать и для качественного анализа изменения состояния поляризации излучения во времени. Так, например, свободной генерации лазера на неодимовом стекле (без анизотропных элементов) будет соответствовать хаотический перескок точки P1 вдоль экватора на угол порядка (/2 (на ортогональную линейную поляризацию) с характерным временем порядка времени разгорания генерации. Незначительные флуктуации двулучепреломления в лазере с активной средой, находящейся в сильном аксиальном поле (но резонатор которого не имеет преимущественной поляризации например, ионный аргоновый лазер с внутренними зеркалами), будут приводить к соответствующему движению две точки Ps1 и Ps2 в области северного и иного полюсов сферы Пуанкаре и т.п.
В то же время для количественного анализа состояния поляризации
удобнее использовать следующие параметры Стокса, которые сравнительно
просто могут быть измерены непосредственно: s0=I — полная интенсивность пучка; s1=Ix-Iy — разница интенсивности линейно поляризованных компонент
(т.е. интенсивностей, пропускаемых высококачественным поляроидом или
поляризационной призмой) для азимутальных углов 0( (x-компонента) и 90( (y-
компонента); s2=I(((-I((( — разница интенсивностей при установке поляроида
посередине между осями XY (I((() и перпендикулярно биссектрисе угла xOy (I-
((() s3=I(-I( — то же, что и для s1, s2; но для циркулярно поляризованного
(соответственно по правому и левому кругу) света.
Таким образом, на первый взгляд, требуется иметь семь измерителей елей
интенсивности, однако вполне достаточно четырех величин, например Ix, Iy,
I((( и I(. При этом параметры Стокса (правда, в более сложной для обработки
форме) могут быть автоматически вычислены по соответствующим формулам.
Такой эллипсометр состоит из трех пар пластин, установленных под углом
Брюстера и развернутых на угол 90( в каждой паре. В результате от первой
пластины П1 отражается только составляющая Ix, от второй П2 — только Iy, от
третьей П3 — только I((( (так как вторая пара пластин развернута
относительно первой на угол 45( ), а от пятой П5 — только I( (так как
перед третьей парой пластин стоит четвертьволновая пластина ((((().
Отражаемые четвертой П4 и шестой П6 пластинами пучки, пропорциональные I-
((( и I(, не требуется для вычисления параметров Стокса, но сами пластины
необходимы для обеспечения точности работы системы за счет четной симметрии
каждого каскада пластин. Очевидно, что такой четырехканальный поляриметр
может использоваться для анализа излучения как импульсных (его
быстродействие определяется а основном используемыми фотоприемниками и
может достигать 10-8 с), так и непрерывных лазеров.
В последнем случав можно применять поляриметры, работающие в режиме
последовательного анализа отдельных поляризационных компонент лазерного
пучка. Существенно, что в данном случав заметно повышает точность измерения
(достижение точности основных величин — степени поляризации р, эллиптичности (а/b) угла преимущественной поляризации ( в 1% не составляет
труда) за счет снижения шумов при накоплении сигнала и синхронном
детектировании. В качестве примера поляриметра данного типа сошлемся на
схему модуляционного поляриметра. В нем используется двухканальный
поляризационный анализатор последовательного действия, содержащий
непрерывно вращающуюся (с угловой скоростью () четвертьволновую пластинку
((=((() и призму Волластона, расщепляющую выходной лучок на две взаимно
ортогональные поляризации с переменными во времени интенсивностями:
[pic] где ( — угол, определяющий ориентацию анализатора — призмы
Волластона, а [pic] — интенсивность линейно поляризованной составляющей.
При попарной обработке обоих получаемых сигналов получим: на нулевой
частоте (по постоянному току) s0=I1(0)+I2(0), при детектировании на частоте
второй гармонию (f2=2(/2(),
[pic] при детектировании на частоте четвертой гармоники) ([pic] угловое положение плоскости преимущественных колебаний ((0.5(4, где (4 — фаза сигнала четвертой гармоники. При высокой стабильности поляризации лазерного излучения измерения могут проводиться путем последовательной установки поляроида и четвертьволновой пластинки на оси пучка, замера интенсивности проходящего пучка и соответствующей обработки результатов аналогично обычным поляризационным измерениям.
2 ИЗМЕРЕНИЕ СПЕКТРАЛЬНЫХ И КОРРЕЛЯЦИОННЫХ ПАРАМЕТРОВ И ХАРАКТЕРИСТИК
ЛАЗЕРНОГО ИЗЛУЧЕНИЯ
Данная глава посвящена измерению наиболее специфичных параметров и
характеристик лазерного излучения, непосредственно или косвенно связанных с
его когерентностью. Как известно, последняя характеризуется двумя основными
параметрами — временной когерентностью, то есть длительностью (t цуга
излучения с постоянной во времени фазой (или длиной когерентности (l=c((t), и степенью пространственной когерентности, определяющей степень корреляции
(синфазности) излучения по поперечному сечению лазерного пучка.
Естественно, что непосредственное измерение степени когерентности может
осуществляться только интерференционными методами, достаточно сложными как
для их понимания, так и для реализации; этому и посвящен последний параграф
данной главы. Более доступны эксперименты по косвенной оценке временной
когерентности путем измерения ширины линии лазерного излучения
((изл=1/2((t. В зависимости от абсолютного значения ((изл такие измерения
могут проводиться как в оптическом диапазоне (((изл >106 Гц), так и в
радиофизическом (при меньших значениях ((изл), что будет рассмотрено
соответственно в 2.2 и 2.3. Предварительно целесообразно вкратце напомнить
основные моменты по физике лазерной генерации, связанные с когерентностью
излучения.
1 Влияние параметров лазера на когерентность его излучения
Рекомендуем скачать другие рефераты по теме: сочинение на тему образ, скачать реферат бесплатно на тему, скачать бесплатно шпоры.
Категории:
Предыдущая страница реферата | 1 2 3 4 5 6 7 8 9 | Следующая страница реферата