Разработка модели технологического процесса получения ребристых труб и ее апробация
| Категория реферата: Рефераты по технологии
| Теги реферата: антикризисное управление предприятием, темы рефератов по физике
| Добавил(а) на сайт: Beljaev.
Предыдущая страница реферата | 14 15 16 17 18 19 20 21 22 23 24 | Следующая страница реферата
Методы количественной металлографии необходимы для определения характеристики многих важных особенностей структуры: величины неметаллических включений или отдельных фаз, присутствующих в сплаве, количества включений разных фаз сплава, величины зерна. Величина зерна выявляется чаще всего после травления микрошлифов. Для определения размера зерна сравнивают микроструктуру при увеличении в 100 раз со стандартными шкалами [32].
Основной недостаток методики стандартных шкал - оценка условными баллами и обусловленный этим ступенчатый, скачкообразный характер шкал. Для получения более точных и надежных результатов те же параметры могут быть оценены не визуально, а непосредственно измерены или подсчитаны под микроскопом или на микрофотографии.
С этой целью используют методы стереометрической металлографии. В
частности, для определения фазового и структурного объемного состава сплава
используется линейный метод Розиваля. Этот метод основывается на принципе
Кавельери-Ноера, согласно которому измерение объемов тел можно заменить не
только измерением площадей, но и длин отрезков. Сущность линейного метода
заключается в том, что видимая в микроскоп структура, состоящая из любого
количества фаз или структурных составляющих, пересекается прямой линией.
Контуры сечений отдельных фаз или структурных составляющих рассекут эти
линии на отдельные отрезки.
Если раздельно просуммировать длины отрезков, попавших на каждую из фаз или структурных составляющих сплава, и разделить суммы на общую длину секущих линий, то полученные частные, согласно принципу Кавальери-Акера, будут равны долям объема сплава, которые занимает каждая из этих фаз или структурных составляющих.
8 ОБРАБОТКА И АНАЛИЗ РЕЗУЛЬТАТОВ ИССЛЕДОВАНИЙ
1 ОПРЕДЕЛЕНИЕ ОПТИМАЛЬНЫХ РАЗМЕРОВ ОБРАЗЦА ДЛЯ ИСПЫТАНИЙ НА ГЕРМЕТИЧНОСТЬ
Для испытания образцов на герметичность необходимо стремиться к сокращению времени, затрачиваемого на проведение опытов. Для этого испытания целесообразно проводить при условиях, которые позволяют обеспечить быстрое просачивание (10-15 минут) жидкости через образец.
Рис.8-1. Стандартная проба
Очевидно, чем меньше будет толщина стенки образца, тем быстрее через
него будет проникать жидкость. Следовательно, образец должен иметь
минимальную толщину. Но, с другой стороны, чем больше будет толщина стенки
образца, тем вернее будут показания герметичности. Таким образом, необходимо провести ряд опытов с целью определения оптимальной толщины
стенки образца и установить зависимость ее от давления, при котором должно
происходить просачивание жидкости в сравнительно небольшой промежуток
времени. Для этой цели отлиты три стандартные пробы с размерами: диаметр -
30 мм, длина - 340 мм (рис.8-1) из чугунного лома следующего химического
состава:
С - 3.47 (;
Si - 1.18 (;
Mn - 0.54 (;
S - 0.083 (;
Р - 0.185 (.
Механические свойства: НВ = 220,
(изг = 33.5 кг/мм2,
fпр = 3.8 мм.
Из каждой пробы были выточены образцы с толщиной рабочей части соответственно 0.5 ; 1.0; 1.5; 2.0; 2.5; 3.0 мм. Эти образцы подвергались испытанию на герметичность по описанной методике.
С целью исключения случайных ошибок испытания образцов на герметичность проводились дважды. При всех испытаниях проводился замер и фиксировалось время, при которых происходило просачивание керосина (( = 1,18 (Е) по всей контрольной поверхности образца. Опытами было установлено, что самое минимальное количество просочившейся жидкости, которая наблюдается на поверхности образца, составляет W ( 0.002 мл. Это количество жидкости в дальнейшем использовалось для расчета герметичности чугуна.
Результаты испытаний герметичности чугунных образцов сведены в таблицу
8-1. Время просачивания керосина на контрольной поверхности образца
определялось с момента воздействия на него критического давления.
Таблица 8-1
|№ |толщина |критичес|кол-во |площадь |время |гермет|удельная |
| |стенки,(|кое |просочивше|рабочей |просачив|ичност|герметично|
| |,см |давление|йся |поверхности|ания, |ь, кЕГ|сть,кЕГ/см|
| | |,Р,кг/см|жидкости,W|, см2 |мин. | |2 |
| | |2 |,см3 | | | | |
|1 |0.05 |15 |0.02 |1.5 |2 |18 |7200 |
|2 |0.05 |20 |0.02 |1.5 |2 |24 |9600 |
|3 |0.08 |25 |0.02 |1.5 |3 |48 |7500 |
|4 |0.1 |50 |0.02 |1.5 |2 |66 |6600 |
|5 |0.15 |70 |0.02 |1.5 |5 |160 |7100 |
|6 |0.15 |50 |0.02 |1.5 |7 |220 |9600 |
|7 |0.20 |100 |0.02 |1.5 |8 |520 |12600 |
|8 |0.20 |150 |0.02 |1.5 |5 |470 |10200 |
|9 |0.25 |400 |Просачивание не наблюдалось |
|10|0.25 |400 |Просачивание не наблюдалось |
|11|0.30 |400 |Просачивание не наблюдалось |
|12|0.30 |400 |Просачивание не наблюдалось |
[pic]
Рис.8-2
На рис.8-2 представлена кривая герметичности чугунных образцов в зависимости от их толщины, построенная по данным таблицы 8-1.
Рекомендуем скачать другие рефераты по теме: шпаргалки по уголовному, дипломы рефераты, доклади.
Категории:
Предыдущая страница реферата | 14 15 16 17 18 19 20 21 22 23 24 | Следующая страница реферата