Техническое зрение роботов
| Категория реферата: Рефераты по технологии
| Теги реферата: реферат на тему життя, реферат на тему мова
| Добавил(а) на сайт: Jadviga.
Предыдущая страница реферата | 1 2 3 4 5 6 7 8 | Следующая страница реферата
[pic]
[pic] где (—угол (относительно оси х), вдоль которого скорость изменения имеет наибольшее значение. Тогда можно сказать, что угол пиксела контура с координатами {х', у') в некоторой окрестности (х, у) подобен углу пиксела с координатами {х, у) при выполнении следующего неравенства:
[pic] где А—пороговое значение угла. Необходимо отметить, что направление контура в точке {х, у) в действительности перпендикулярно направлению вектора градиента в этой точке. Однако для сравнения направлений неравенство дает эквивалентные результаты.
Основываясь на этих предположениях, мы соединяем точку в некоторой окрестности (х, у) с пикселом, имеющим координаты (х, у), если удовлетворяются критерии по величине и направлению. Двигаясь от пиксела к пикселу и представляя каждую присоединяемую точку как центр окрестности, процесс повторяется для каждой точки образа. Для установления соответствия между уровнями интенсивности освещения и последовательностями пикселов контура применяется стандартная библиотечная процедура.
Цель состоит в определении размеров прямоугольников, с помощью которых можно построить качественное изображение. Построение таких прямоугольников осуществляется в результате определения строго горизонтальных и вертикальных контуров. Дальнейший процесс состоял в соединении сегментов контура, разделенных небольшими промежутками, и в объединении отдельных коротких сегментов.
2.1.2.Глобальный анализ с помощью преобразования Хоуга.
Рассмотрим метод соединения граничных точек путем определения их
расположения на кривой специального вида. Первоначально предполагая, что на
плоскости ху образа дано п точек, требуется найти подпоследовательности
точек, лежащих на прямых линиях. Одно из возможных решений состоит в
построении всех линий, проходящих через каждую пару точек, а затем в
нахождении всех подпоследовательностей точек, близких к определенным
линиям. Задача, связанная с этой процедурой, заключается в нахождении п(п—
1)/2 ~ п2 линий и затем в осуществлении п[п(п—1)]/2 ~ п3 сравнений каждой
точки со всеми линиями. Этот процесс трудоемок с вычислительной точки
зрения за исключением самых простых приложений.
Данную задачу можно решить по-другому, применяя подход, предложенный
Хоугом и называемый преобразованием Хоуга. Рассмотрим точку (хi yi) и общее
уравнение прямой линии у:= аxi + bi. Имеется бесконечное число линий, проходящих через точку (хi yi), но все они удовлетворяют уравнению у:= аxi
+ bi при различных значениях а и b. Однако, если мы запишем это уравнение в
виде b = -хi а + yi и рассмотрим плоскость аb (пространство параметров), тогда мы имеем уравнение одной линии для фиксированной пары чисел (хi yi).
Более того, вторая точка (хj, уj) также имеет в пространстве параметров
связанную с ней линию, которая пересекает другую линию, связанную с точкой
(хi yi) в точке (а', b’), где значения а' и b’—параметры линии, на которой
расположены точки (хi yi) и (хj, уj) в плоскости ху. Фактически все точки, расположенные на этой линии, в пространстве параметров будут иметь линии
пересечения в точке (а', b’).
Вычислительная привлекательность преобразования Хоуга заключается в
разделении пространства параметров на так называемые собирающие элементы , где (aмакс, амин) и (bмакс, bмин)—допустимые величины параметров линий.
Собирающий элемент A (i, j) соответствует площади, связанной с координатами
пространства параметров (аi, bj). Вначале эти элементы считаются равными
нулю. Тогда для каждой точки (xk, уk) в плоскости образа мы полагаем
параметр а равным каждому из допустимых значений на оси а и вычисляем
соответствующее b, используя уравнение b = -хk + yk Полученное значение b
затем округляется до ближайшего допустимого значения на оси b. Если выбор
aр приводит к вычислению bq, мы полагаем А(р, q) ==А(р, q) + 1. После
завершения этой процедуры значение М в элементе A (i, j) соответствует М
точкам в плоскости xy, лежащим на линии y=aix+b. Точность расположения этих
точек на одной прямой зависит от числа разбиений плоскости аb. Отметим, что, если мы разбиваем ось а на К частей, тогда для каждой точки (xk, уk)
мы получаем К значений b, соответствующих К возможным значениям а.
Поскольку имеется п точек образа, процесс состоит из пК вычислительных
операций. Поэтому приведенная выше процедура линейна относительно п и имеет
меньшее число вычислительных операций, чем процедура, описанная выше, если
Кd2(z), или как пиксел
фона, если d2(2) > d1(z). Тогда оптимальный порог определяется величиной z, для которой d1{z)=d2(z). Таким образом, полагая в уравнениях z=T, получаем, что оптимальный порог удовлетворяет уравнению
P1р1(T)=P2p2(T).
[pic] рис. Гистограмма интенсивности (а) и ее аппроксимация в виде •суммы двух функций плотности вероятности (б).
Итак, если известны функциональные зависимости p1(z) и р2(г),. это уравнение можно использовать для нахождения оптимального порога, который отделяет объекты от фона. Если этот порог известен, уравнение может быть использовано для сегментации данного образа.
2.2.3.Определение порогового уровня на основе характеристик границы.
Одним из наиболее важных аспектов при выборе порогового уровня является возможность надежно идентифицировать модовые пики для данной гистограммы. Это важно при автоматическом выборе порогового уровня в ситуациях, когда характеристики образа меняются вследствие большого разброса интенсивности. Из изложенного выше очевидно, что возможность выбора «хорошего» порогового уровня может быть существенно увеличена в случае, если пики гистограмм являются высокими, узкими, симметричными и разделены глубокими провалами.
Одним из подходов для улучшения вида гистограмм является рассмотрение только тех пикселов, которые лежат на границе (или около нее) между объектами и фоном. Одно из очевидных улучшений состоит в том, что этот подход позволяет получать гистограммы менее зависимыми от отношения между объектом и фоном. Например, гистограмма интенсивности образа, составленного из маленького объекта на большой площади постоянного фона, определялась бы большим пиком вследствие концентрации пикселов фона. С другой стороны, результирующие гистограммы имели бы пики с более сбалансированными высотами, если бы рассматривались пикселы, лежащие только на (или около) границе между объектом и фоном. Кроме того, вероятность расположения пиксела на границе объекта практически равна вероятности того, что он лежит на границе фона, что улучшает симметрию гистограммных пиков. Окончательно, как показано ниже, использование пикселов, которые удовлетворяют некоторым простым критериям, основанным на операторах градиента и Лапласа, приводит к увеличению провалов между пиками гистограммы.
Выше мы неявно подразумевали, что граница между объектами и фоном
известна. Очевидно, что во время проведения сегментации эта информация
отсутствует, поскольку нахождение раздела между объектами и фоном является
окончательной целью приведенной здесь процедуры. Однако, что, вычислив
градиент пиксела, можно определить, лежит ли он или не лежит на контуре.
Кроме того, лапласиан может дать информацию о том, лежит ли данный пиксел
на темной (т. е. фон) или светлой (объект) стороне контура. С внутренней
стороны идеального контура лапласиан равен нулю, поэтому на практике можно
ожидать, что провалы гистограмм, образованных пикселами, выбранными по
критерию градиент/лапласиан, будут располагаться достаточно редко и иметь
желаемую высоту.
Градиент G[f(x,y)] любой точки образа и лапласиан L[f{x, у)]. Эти два свойства можно использовать для формирования трехуровнего образа:
[pic]
(где символы 0, +, - представляют три различных уровня освещенности, а
Т—пороговый уровень. Предположим, что темный объект располагается на
светлом фоне, тогда применение уравнения дает образ s(x, у), в котором все
пикселы, не лежащие на контуре (для них значение G[f (х, у)] меньше Т, помечены 0, все пикселы на темной стороне контура помечены + и все пикселы
на светлой стороне контура помечены —. Для светлого объекта на темном фоне
символы + и - в уравнении (8.2-24) меняются местами.
Только что изложенная процедура может применяться для создания сегментированного, бинарного образа, в котором 1 соответствует объектам, представляющим интерес, и 0—фону. Отметим, что перемещение (вдоль горизонтальных или вертикальных линий сканирования) от светлого фона к темному объекту должно характеризоваться заменой знака - фона на -1- объекта s(x, у). Внутренняя область объекта состоит из пикселов, помеченных либо 0 либо +. Окончательно перемещение от объекта к фону характеризуется заменой знака + на —. Таким образом, горизонтальные или вертикальные линии сканирования, содержащие части объекта, имеют следующую структуру:
(...)(-, +)(0 или +)(+, -)(•••), где (...) является произвольной комбинацией +, - или 0. Остальные
скобки содержат точки объекта и помечены 1. Все другие пикселы вдоль той же
линии сканирования помечаются 0, за исключением всех последовательностей из
(0 или +), ограниченных (-, +) и (+, -).
2.2.4.Определение порогового уровня, основанное на нескольких переменных.
Изложенные выше методы связаны с определением порогового уровня для единственного переменного значения интенсивности. В некоторых приложениях можно использовать более одной переменной для характеристики каждого пиксела образа, увеличивая таким образом не только степень различия между объектом и фоном, но и между самими объектами. Одним из наиболее значимых примеров является цветное зрение, где используются красные, зеленые и голубые компоненты (КЗГ) для формирования составного цветного образа. В этом случае каждый пиксел характеризуется тремя переменными и это позволяет строить трехмерную гистограмму. Основная процедура та же, что и для одной переменной. Пусть, например, даны три 16-уровневых изображения, соответствующие КЗГ компонентам датчика цвета. Сформируем кубическую решетку 16х16х16 и поместим в каждый элемент пикселы, КЗГ компоненты которых имеют интенсивности, соответствующие координатам, определяющим положение этого элемента. Число точек в каждом элементе решетки может быть затем разделено на общее число пикселов образа для формирования нормированной гистограммы.
Теперь выбор порога заключается в нахождении групп точек в трехмерном пространстве, где каждая «компактная» группа аналогична основной моде гистограммы одной переменной. Например, предположим, что мы ищем две значимые группы точек данной гистограммы, где одна группа соответствует объекту, а другая—фону. Принимая во внимание, что теперь каждый пиксел имеет три компоненты и может быть рассмотрен как точка трехмерного пространства, можно сегментировать образ с помощью следующей процедуры. Для каждого пиксела образа вычисляется расстояние между этим пикселом и центром каждой группы. Тогда, если пиксел располагается рядом с центром группы точек объекта, мы помечаем его 1; в противном случае мы помечаем его 0. Это понятие легко распространить на большую часть компонентов пиксела и соответственно на большую часть групп. Основная сложность состоит в том, что определение значимых групп, как правило, приводит к довольно сложной задаче, поскольку число переменных возрастает.
2.3.Областно-ориентированная сегментация
Рекомендуем скачать другие рефераты по теме: контрольные рефераты, ответ ru, культурология как наука.
Категории:
Предыдущая страница реферата | 1 2 3 4 5 6 7 8 | Следующая страница реферата