Техническое зрение роботов
| Категория реферата: Рефераты по технологии
| Теги реферата: реферат на тему життя, реферат на тему мова
| Добавил(а) на сайт: Jadviga.
Предыдущая страница реферата | 1 2 3 4 5 6 7 8 | Следующая страница реферата
Один из методов разбиения сегментов границы состоит в последовательном
делении сегмента на две части до тех пор, пока удовлетворяется заданный
критерий. Например, можно потребовать, чтобы максимальная длина
перпендикуляра, проведенного от сегмента границы к линии, соединяющей две
крайние точки этого сегмента, не превышала ранее установленного значения
порогового уровня. Если это имеет место, наиболее дальняя точка становится
вершиной, разделяя, таким образом, исходный сегмент на два подсегмента.
Этот метод обладает тем преимуществом, что он адаптирован к наиболее
подходящим точкам изгиба. Для замкнутой границы наилучшей начальной парой
точек обычно являются точки, наиболее удаленные от границы.
3.2.Дескрипторы области
Область, представляющую интерес, можно описать формой ее границы или же путем задания ее характеристик. Важно отметить, что методы, рассмотренные выше, применяются для описания областей.
3.2.1.Некоторые простые дескрипторы.
Существующие системы технического зрения основываются на довольно простых дескрипторах области, что делает их более привлекательными с вычислительной точки зрения. Как следует ожидать, применение этих дескрипторов ограничено ситуациями, в которых представляющие интерес объекты различаются настолько, что для их идентификации достаточно несколько основных дескрипторов.
Площадь области определяется как число пикселов, содержащихся в пределах ее границы. Этот дескриптор полезен при сборе информации о взаимном расположении и форме объектов, от которых камера располагается приблизительно на одном и том же расстоянии. Типичным примером может служить распознавание системой технического зрения объектов, движущихся по конвейеру.
Большая и малая оси области полезны для определения ориентации объекта. Отношение длин этих осей, называемое эксцентриситетом области, также является важным дескриптором для описания формы области.
Периметром области называется длина ее границы. Хотя иногда периметр
применяется как дескриптор, чаще он используется для определения меры
компактности области, равной квадрату периметра, деленному на площадь.
Отметим, что компактность является безразмерной величиной (и поэтому
инвариантна к изменению масштаба) и минимальной для поверхности, имеющей
форму диска.
Связной называется область, в которой любая пара точек может быть соединена кривой, полностью лежащей в этой области. Для множества связных областей (некоторые из них имеют отверстия) в качестве дескриптора полезно использовать число Эйлера, которое определяется как разность между числом связных областей и числом отверстий. Например, числа Эйлера для букв А и В соответственно равны 0 и —1. Другие дескрипторы области рассматриваются ниже.
3.2.2.Текстура.
Во многих случаях идентификацию объектов или областей образа можно
осуществить, используя дескрипторы текстуры. Хотя не существует формального
определения текстуры, интуитивно этот дескриптор можно рассматривать как
описание свойств поверхности (однородность, шероховатость, регулярность).
Двумя основными подходами для описания текстуры являются статистический и
структурный. Статистические методы дают такие характеристики текстуры, как
однородность, шероховатость, зернистость и т. д. Структурные методы
устанавливают взаимное расположение элементарных частей образа, как, например, описание текстуры, основанной на регулярном расположении
параллельных линий.
3.2.3.Скелет области.
Важным подходом для описания вида структуры плоской области является ее представление в виде графа. Во многих случаях для этого определяется схема (скелет) области с помощью так называемых прореживающих (или же сокращающих) алгоритмов. Прореживающие процедуры играют основную роль в широком диапазоне задач компьютерного зрения — от автоматической проверки печатных плат до подсчета асбестовых волокон в воздушных фильтрах. Скелет области можно определить через преобразование средних осей (ПСО), предложенное в работе. ПСО области R с границей В определяется следующим образом. Для каждой точки р из R мы определяем ближайшую к ней точку, лежащую на В. Если р имеет больше одной такой точки, тогда о ней говорится, что она располагается на средней оси (скелете) области R. Важно отметить, что понятие «ближайшая точка» зависит от определения расстояния, и поэтому на результаты операции ПСО будет влиять выбор метрики. Хотя ПСО дает довольно удовлетворительный скелет области, его прямое применение затруднительно с вычислительной точки зрения, поскольку требуется определение расстояния между каждой точкой области и границы. Был предложен ряд алгоритмов построения средних осей, обладающих большей вычислительной эффективностью. Обычно это алгоритмы прореживания, которые итеративно устраняют из рассмотрения точки контура области так, чтобы выполнялись следующие ограничения:
1) не устранять крайние точки;
2) не приводить к нарушению связности;
3) не вызывать чрезмерного размывания области.
4.СЕГМЕНТАЦИЯ И ОПИСАНИЕ ТРЕХМЕРНЫХ СТРУКТУР
В предыдущих двух разделах основное внимание уделялось методам сегментации и описания двумерных структур. В этом разделе мы рассмотрим эти задачи применительно к трехмерным данным сцены.
По существу зрение является трехмерной проблемой, поэтому в основе разработки многофункциональных систем технического зрения, пригодных для работы в различных средах, лежит процесс обработки информации о трехмерных сценах. Хотя исследования в этой области имеют более чем 10-летнюю историю, такие факторы, как стоимость, скорость и сложность, тормозят внедрение обработки трехмерной зрительной информации в промышленных приложениях.
Возможны три основные формы представления информации о трехмерной
сцене. Если применяются датчики, измеряющие расстояние, то мы получаем
координаты (х, у, z) точек поверхностей объектов. Применение устройств, создающих стереоизображение, дает трехмерные координаты, а также информацию
об освещенности в каждой точке. В этом случае каждая точка представляется
функцией f (х, у, z), где значения последней в точке с координатами (х, у, z) дают значения интенсивности в этой точке (для обозначения точки в
трехмерном пространстве и ее интенсивности часто применяется термин вок
сел). Наконец, можно установить трехмерные связи на основе одного
двумерного образа сцены, т. е. можно выводить связи между объектами, такие, как «над», «за», «перед». Поскольку точное трехмерное расположение точек
сцены обычно не может быть вычислено на основе одного изображения, связи, полученные с помощью этого вида анализа, иногда относятся к так называемой
2,5-мерной информации.
4.1.Описание трехмерной сцены плоскими участками
Один из наиболее простых подходов для сегментации и описания трехмерных структур с помощью координат точек (х, у, z) состоит в разбиении сцены на небольшие плоские «участки» с последующим их объединением в более крупные элементы поверхности в соответствии с некоторым критерием. Этот метод особенно удобен для идентификации многогранных объектов, поверхности которых достаточно гладкие относительно разрешающей способности.
4.2. Применение градиента
Когда сцена задана вокселами, ее можно описать плоскими участками с помощью трехмерного градиента. В этом случае дескрипторы поверхности также получаются в результате объединения этих плоских участков. Вектор градиента указывает направление максимальной скорости изменения функции, а его величина соответствует величине этого изменения. Эти понятия применимы для трехмерного случая и также могут быть использованы для разбиения на сегменты трехмерных структур тем же способом, который применялся для двумерных данных.
4.3. Разметка линий и соединений
Рекомендуем скачать другие рефераты по теме: контрольные рефераты, ответ ru, культурология как наука.
Категории:
Предыдущая страница реферата | 1 2 3 4 5 6 7 8 | Следующая страница реферата