О синтаксической связности
| Категория реферата: Языкознание, филология
| Теги реферата: инновационный менеджмент, план конспект урока
| Добавил(а) на сайт: Янборисов.
Предыдущая страница реферата | 4 5 6 7 8 9 10 11 12 13 14 | Следующая страница реферата
s ¦s s ¦s
--- +-- -- n +-- n.
ss ¦s n ¦s
Таким образом, выражение В не имеет показателя в виде единичного индекса.
Мы познакомились с методом получения показателя выражений, содержащих операторы. Очевидно, что этот метод содержит как частный случай ранее рассмотренный метод, пригодный для выражений без операторов (при его формулировании нужно было бы только вспомнить о "случайно" встречающихся индексах с чертами). Сейчас мы могли бы приведенную ранее дефиницию синтаксической связности повторить дословно и она также была бы обязательна для выражений, содержащих операторы.
10. Понятие синтаксической связности выражений без операторов совпадает с понятием их синтаксической связности. Однако для выражений с операторами к понятию синтаксической связности должно добавиться еще одно условие. Это условие требует, чтобы в аргументе каждого оператора, т.е. в выражении к которому оператор применим 7), каждой переменной, на которую указывает оператор, соответствовала эквиморфная переменная, не связанная внутри этого аргумента. Лишь тогда, когда это условие выполняется, синтаксически связанное выражение, содержащее операторы, является также и синтаксически правильным.
III.
11. Связывающую роль операторов мы посчитали их характерным свойством, отличающей операторы от функторов. Связывание одной или нескольких переменных является общей свойством всех операторов. Кроме этой связующей роли различные операторы играют и другие роли, чем и отличаются между собой. Однако существует оператор, роль которого исчерпывается связыванием одной или больше переменных. Как кажется, таким оператором является знак "^", введенный Расселлом и Уайтхедом. Расселл употребляет этот знак для различения того, что он называет "неопределенным значением функции" от того, что называется "самой функцией". Если "fx" есть символ неопределенного значения функции, то "fx^" представляет саму функцию. Однако при ближайшем рассмотрении оказывается, что то, что Расселл называет "неопределенным значением функции" является тем, что где-то в других местах называется "значением зависимой переменной". Зато то, что Расселл называет "самой функцией", не является никакой переменной, но чем-то постоянным. Более глубокое проникновение в замечания, при помощи которых Расселл выясняет понятие "собственно функции", приводит к допущению, что этим определением Расселл хочет ухватить то, что мы назвали бы объективным эквивалентом функтора. Итак, fx^ есть то же, что f, и символы "fx^" и "f" имеют один денотат. Если эта интерпретация верна, то знак "^" можно причислить к операторам, поскольку его роль заключается в "вычеркивании" или "связывании" переменной. Нужно еще вспомнить, что при помощи знака "^" можно одновременно связывать в одном выражении несколько переменных. Так, например, "fx^y^" представляет функтор двух аргументов "f".
В простейших случаях, когда знак "^" ставится над всеми аргументами главного функтора всего выражения, например, в часто используемых примерах "fx^" или "fx^y^", знак "^" действует так же, как черта, которой перечеркивают акцентируемую переменную (т.е. переменную, над которой находится знак "^") и таким образом ее элиминируют. Однако если не все аргументы главного функтора всего выражения акцентированы, то роль знака "^" уже не отождествима c обычным перечеркиванием. Так, например, "p^-->.a.~a" (причем "a" должно быть постоянным предложением) представляет функтор "f" типа s/s, для которого имеет место эквивалентность fp..p-->.a.~a . Сразу видно, что знак отрицания на месте "f" выполняет эту эквивалентность. Следовательно, "p^-->a.~a" означает то же, что "~". Зато выражение "-->.a.~a", которое можно было бы получить из "p-->.a.~a" посредством перечеркивания буквы "p", не представляет функтор типа s/s и вообще это выражение не является синтаксически связанным.
12. Если все выражение, в котором знак "^" соотносится с какой-то переменной, принадлежит к категории предложений, тогда в символике Расселла мы находим другой знак, с которым знак "^" можно отождествить. Им является знак (x^), используемый для образования символа класса, или же знак (x^y^), используемый в символике отношений. Ведь если "fx^" представляет функцию высказывания, то символ "(x^).fx" имеет денотатом то же, что и функтор "f", а следовательно то же, что "fx^" (если не обращать внимание на некоторые сложности, возникающие вследствие допущения интенсиональных функций, от рассмотрения которых Расселл отказался во втором издании Principia). То же можно сказать и об эквивалентности символов "(x^y^).fxy" и "fx^y^".
Мы будем пользоваться знаками (x^) или (x^y^) также и в тех случаях, когда выражение, к которому они относятся, не принадлежит к категории предложений, так что мы вообще будем писать "(x^).fx" вместо "fx^", а символ "fx^y^" можем заменить "(x^y^).fxy". Измененное написание знака "^" ту дает выгоду, что можно выделить всё выражение, на которое распространяется действие оператора, тогда как в предыдущем написании это не было возможно, что в сложных случаях может привести к многозначности. Кроме того, новое написание неоднократно позволяет поочередно применять оператор к выражению, т.е. допускает запись "(x^):(y^).fxy", которая отлична от "(x^y^).fxy" (в старом написании "fx^y^"). В новом написании более выразительно проявляется характер символа "^" как оператора.
13. Символ (x^) (или (x^y^) и т.п.) как оператор получает в нашей символике индексов индекс с чертой. Однако поскольку эти операторы могут быть применены к выражениям разных категорий значения и кроме того преобразуют их в выражения различных категорий значения, то символ "^" не всегда получает один и тот же индекс с чертой.
Обобщенное словесное определение (унарного) оператора "(x^)" звучит следующим образом: оператор "(x^)", относящийся к переменной X в выражении А, образует с этим выражением функтор, который с переменной X как со своим аргументом образует выражение, эквивалентное выражению А. Это можно продемонстрировать на следующем примере, в котором выражение А имеет вид "fx", а переменная X - вид "x": (x^).fx:x.:.fx.
Из сказанного видно, что если выражение А, к которому относится оператор, имеет показатель "Е1", а переменная X - индекс "Е2", то оператор должен иметь индекс с чертой:
¦ Е1
¦----
¦ Е2
+-----
¦ Е1
В зависимости от того, какие индексы ставятся вместо "Е1" и "Е2", снабженный чертой индекс нашего оператора принимает различный вид.
Аналогично обстоит дело для многократных операторов типа (x^y^).
Как уже было отмечено, роль оператора "^", как кажется, исчерпывается связыванием переменной. Однако роль других операторов простирается дальше. Главное различие между функтором и оператором мы усматриваем в том, что оператор играет связывающую роль, которую функтор не выполняет. Это приводит к мысли, что роль таких операторов, которые не только связывают, возможно удастся разложить так, что связывающую роль оператора выполняет знак "^", тогда как вторую роль исполняет функтор. Введем, например, функтор "U", который получит индекс
s
---
s
---
Рекомендуем скачать другие рефераты по теме: спортивные рефераты, реферат речь, контрольная работа 1.
Категории:
Предыдущая страница реферата | 4 5 6 7 8 9 10 11 12 13 14 | Следующая страница реферата