Физические законы, переменные, принципы
| Категория реферата: Рефераты по физике
| Теги реферата: конспект урока 5 класс, реферат диагностика
| Добавил(а) на сайт: Касперский.
Предыдущая страница реферата | 1 2 3 4 5 6 7 8 | Следующая страница реферата
In addition to describing electromagnetism, his equations alsopredict
that waves can propagate through the electromagneticfield, and would always
propagate at the same speed -- these are electromagnetic waves.
Meissner effect (W. Meissner; 1933)
The decrease of the magnetic flux within a superconducting metalwhen it
is cooled below the critical temperature. That is,superconducting
materials reflect magnetic fields.
Michelson-Morley experiment (A.A. Michelson, E.W. Morley; 1887)
Possibly the most famous null-experiment of all time, designed toverify the existence of the proposed "lumeniferous aether" throughwhich light waves were thought to propagate. Since the Earthmoves through this aether, a lightbeam fired in the Earth'sdirection of motion would lag behind one fired sideways, where noaether effect would be present. This difference could be detectedwith the use of an interferometer.
The experiment showed absolutely no aether shift whatsoever,where one
should have been quite detectable. Thus the aetherconcept was discredited
as was the constancy of the speed oflight.
Millikan oil drop experiment (R.A. Millikan)
A famous experiment designed to measure the electronic charge.Drops of
oil were carried past a uniform electric field betweencharged plates.
After charging the drop with x-rays, he adjustedthe electric field between
the plates so that the oil drop wasexactly balanced against the force of
gravity. Then the charge onthe drop would be known. Millikan did this
repeatedly and foundthat all the charges he measured came in integer
multiples only ofa certain smallest value, which is the charge on the
electron.
Newton's law of universal gravitation (Sir I. Newton)
Two bodies attract each other with equal and opposite forces;
themagnitude of this force is proportional to the product of the twomasses
and is also proportional to the inverse square of thedistance between the
centers of mass of the two bodies.
Newton's laws of motion (Sir I. Newton)
Newton's first law of motion. A body continues in its state of rest or of uniform motion unless it is acted upon by an external force.
Newton's second law of motion. For an unbalanced force acting on a body, the acceleration produces is proportional to the force impressed; the constant of proportionality is the inertial mass of the body.
Newton's third law of motion. In a system where no external forces are
present, every action is always opposed by an equal and opposite reaction.
Ohm's law (G. Ohm; 1827)
The ratio of the potential difference between the ends of aconductor to
the current flowing through it is constant; theconstant of proportionality
is called the resistance, and isdifferent for different materials.
Olbers' paradox (H. Olbers; 1826)
If the Universe is infinite, uniform, and unchanging then theentire sky
at night would be bright -- about as bright as the Sun.The further you
looked out into space, the more stars there wouldbe, and thus in any
direction in which you looked your line-of-sight would eventually impinge
upon a star. The paradox isresolved by the Big Bang theory, which puts
forth that theUniverse is not infinite, non-uniform, and changing.
Pascal's principle
Pressure applied to an enclosed imcompressible static fluid
istransmitted undiminished to all parts of the fluid.
Paschen series
The series which describes the emission spectrum of hydrogen whenthe
electron is jumping to the third orbital. All of the linesare in the
infrared portion of the spectrum.
Pauli exclusion principle (W. Pauli; 1925)
No two identical fermions in a system, such as electrons in anatom, can
have an identical set of quantum numbers.
Peltier effect (J.C.A. Peltier; 1834)
The change in temperature produced at a junction between twodissimilar metals or semiconductors when an electric currentpasses through the junction. permeability of free space; magnetic constant; m 0
The ratio of the magnetic flux density in a substance to theexternal field strength for vacuum. It is equal to 4 p . 10-7 H/m. permittivity of free space; electric constant; e0
The ratio of the electric displacement to the intensity of theelectric
field producing it in vacuum. It is equal to 8.854.10-12 F/m.
Pfund series
The series which describes the emission spectrum of hydrogen whenthe
electron is jumping to the fifth orbital. All of the linesare in the
infrared portion of the spectrum.
Photoelectric effect
An effect explained by A. Einstein that demonstrate that lightseems to
be made up of particles, or photons. Light can exciteelectrons (called
photoelectrons) to be ejected from a metal.Light with a frequency below a
certain threshold, at anyintensity, will not cause any photoelectrons to be
emitted fromthe metal. Above that frequency, photoelectrons are emitted
inproportion to the intensity of incident light. The reason is that a
photon has energy in proportion to itswavelength, and the constant of
proportionality is Planck'sconstant. Below a certain frequency -- and thus
below a certainenergy -- the incident photons do not have enough energy to
knockthe photoelectrons out of the metal. Above that threshold
energy,called the workfunction, photons will knock the photoelectrons outof
the metal, in proportion to the number of photons (theintensity of the
light). At higher frequencies and energies, thephotoelectrons ejected
obtain a kinetic energy corresponding tothe difference between the photon's
energy and the workfunction.
Planck constant; h
The fundamental constant equal to the ratio of the energy of aquantum
of energy to its frequency. It is the quantum of action.It has the value
6.626196.10-34 J.s.
Planck's radiation law
A law which more accurately described blackbody radiation becauseit assumed that electromagnetic radiation is quantized.
Poisson spot (S.D. Poisson)
See Arago spot. Poisson predicted the existence of such a spot,and
actually used it to demonstrate that the wave theory of lightmust be in
error.
Principle of causality
The principle that cause must always preceed effect. Moreformally, if
an event A ("the cause") somehow influences an eventB ("the effect") which
occurs later in time, then event B cannotin turn have an influence on event
A. The principle is best illustrated with an example. Say thatevent A
constitutes a murderer making the decision to kill hisvictim, and that
event B is the murderer actually committing theact. The principle of
causality puts forth that the act ofmurder cannot have an influence on the
murderer's decision tocommit it. If the murderer were to somehow see
himself committingthe act and change his mind, then a murder would have
beencommitted in the future without a prior cause (he changed hismind).
This represents a causality violation. Both time traveland faster-than-
light travel both imply violations of causality,which is why most
physicists think they are impossible, or atleast impossible in the general
sense.
Principle of determinism
The principle that if one knows the state to an infinite accuracyof a
system at one point in time, one would be able to predict thestate of that
system with infinite accuracy at any other time,past or future. For
example, if one were to know all of thepositions and velocities of all the
particles in a closed system,then determinism would imply that one could
then predict thepositions and velocities of those particles at any other
time.This principle has been disfavored due to the advent of
quantummechanics, where probabilities take an important part in theactions
of the subatomic world, and the Heisenberg uncertaintyprinciple implies
that one cannot know both the position andvelocity of a particle to
arbitrary precision.
Rayleigh criterion; resolving power
Рекомендуем скачать другие рефераты по теме: ответы гиа, мировая торговля.
Категории:
Предыдущая страница реферата | 1 2 3 4 5 6 7 8 | Следующая страница реферата