Стереометрия. Тема Движение
| Категория реферата: Рефераты по физике
| Теги реферата: культурология шпаргалки, воспитание реферат
| Добавил(а) на сайт: Kazjuchic.
1 2 3 4 5 6 | Следующая страница реферата
Реферат по стереометрии
Ученика 11 “В” класса
Алексеенко Николая
Тема :
Движение.
Спасибо за внимание !
29.10.1995 г.
Школа # 1278, кл. 11 “В”.
Движения. Преобразования фигур.
При создании реферата были использованы следующие книги:
1. “Геометрия для 9-10 классов”. А.Д.Александров, А.Л.Вернер, В.И.Рыжик.
2. “Геометрия”. Л.С.Атанасян, В.Ф.Бутузов, С.Б.Кадомцев и др.
3. “Математика”. В.А.Гусев, А.Г.Мордкович.
Все рисунки находятся на отдельном листе, приложенном к реферату. Решения задач также на отдельном листе. Доказательства основных теорем, связанных с движением, я также привожу на отдельных листках. В реферате - только определения и классификация.
Движением в геометрии называется отображение, сохраняющее расстояние.
Следует разъяснить, что подразумевается под словом “отображение”.
1. Отображения, образы, композиции отображений.
Отображением множества M в множество N называется соответствие каждому элементу из M единственного элемента из N.
Мы будем рассматривать только отображение фигур в пространстве.
Никакие другие отображения не рассматриваются, и потому слово “отображение”
означает соответствие точкам точек.
О точке X’, соответствующей при данном отображении f точке X, говорят, что она является образом точки X, и пишут X’ = f(X). Множество точек X’, соответствующих точкам фигуры M, при отображении f называется образом фигуры M и обозначается M’ = f(M).
Если образом M является вся фигура N, т.е. f(M) = N, то говорят об отображении фигуры M на фигуру N.
Отображение называется взаимно однозначным, если при этом отображении образы каждых двух различных точек различны.
Пусть у нас есть взаимно однозначное отображение f множества M на N.
Тогда каждая точка X’ множества N является образом только одной
(единственной) точки X множества M. Поэтому каждой точке X’ ( N можно
поставить в соответствие ту единственную точку X ( M, образом которой при
отображении f является точка X’. Тем самым мы определим отображение
множества N на множество M, оно называется обратным для отображения f и
обозначается f. Если отображение f имеет обратное, то оно называется
обратимым.
Неподвижной точкой отображения ( называется такая точка A, что
((A) = A.
Из данных определений непосредственно следует, что если отображение f
обратимо, то обратное ему отображение f также обратимо и (f ) = f.
Поэтому отображения f и f называются также взаимно обратными.
Пусть заданы два отображения: отображение f множества M в множество N
и отображение g множества N в множество P. Если при отображении f точка
X ( N перешла в точку X’ = f(X) ( N, а затем X’ при отображении g перешла в
точку X’’ ( P, то тем самым в результате X перешла в X’’ (рис.1).
В результате получается некоторое отображение h множества M в множество P. Отображение h называется композицией отображения f с последующим отображением g.
Если данное отображение f обратимо, то, применяя его, а потом обратное ему отображение f , вернем, очевидно, все точки в исходное положение, т.е. получим тождественное отображение, такое, которое каждой точке сопоставляет эту же точку.
Рекомендуем скачать другие рефераты по теме: оформление доклада, курсовые.
Категории:
1 2 3 4 5 6 | Следующая страница реферата