Теплопроводность через сферическую оболочку
| Категория реферата: Рефераты по физике
| Теги реферата: курсовые работы бесплатно, бесплатные рефераты и курсовые
| Добавил(а) на сайт: Ohrema.
Предыдущая страница реферата | 1 2 3 4 5 6 7 8 9 10 11 | Следующая страница реферата
Уравнения двухмерного температурного поля для режима стационарного:
[pic]; (2.4)
нестационарного:
[pic]. (2.5)
На практике встречаются задачи, когда температура тела является функцией одной координаты, тогда уравнения одномерного температурного поля для режима стационарного:
[pic]; (2.6)
нестационарного:
[pic]. (2.7)
Одномерной, например, является задача о переносе теплоты в стенке, у
которой длину и ширину можно считать бесконечно большой по сравнению с
толщиной.
2.2 Градиент температуры
Если соединить точки тела с одинаковой температурой, то получим поверхность равных температур, называемую изотермической. Изотермические поверхности между собой никогда не пересекаются. Они либо замыкаются на себя, либо кончаются на границах тела.
Рассмотрим две близкие изотермические поверхности с температурами T и
T + (T (рисунок 2.1).
Перемещаясь из какой либо точки А, можно обнаружить, что интенсивность изменения температуры по различным направлениям неодинакова. Если перемещаться по изотермической поверхности, то изменения температуры не обнаружим. Если же перемещаться вдоль какого-либо направления P, то наблюдаем изменение температуры. Наибольшая разность температур на единицу длины будет в направлении нормали к изотермической поверхности. Предел отношения изменения температуры [pic] к расстоянию между изотермами по нормали [pic], когда [pic]стремится к нулю, называют градиентом температуры.
[pic] (2.8)
Градиент температуры есть вектор, направленный по нормали к изотермической поверхности в сторону возрастания температуры и численно равный частной производной от температуры по этому направлению. За положительное направление градиента принимается направление возрастания температур.
2.3 Основной закон теплопроводности
Для распространения теплоты в любом теле или пространстве необходимо наличие разности температур в различных точках тела. Это условие относится и к передаче теплоты теплопроводностью, при которой градиент температуры в различных точках тела не должен быть равен нулю.
Связь между количеством теплоты [pic], проходящим за промежуток времени [pic] через элементарную площадку dS, расположенную на изотермической поверхности, и градиентом температуры устанавливается гипотезой Фурье, согласно которой
[pic]. (2.9)
Минус в правой части показывает, что в направлении теплового потока температура убывает и grad T является величиной отрицательной. Коэффициент пропорциональности [pic] называется коэффициентом теплопроводности или более кратко - теплопроводностью. Справедливость гипотезы Фурье подтверждено многочисленными опытными данными, поэтому эта гипотеза в настоящее время носит название основного уравнения теплопроводности или закона Фурье.
Отношение количества теплоты, проходящего через заданную поверхность, ко времени называют тепловым потоком. Тепловой поток обозначают q и выражают в ваттах (Вт):
[pic]. (2.10)
Отношение теплового потока dq через малый элемент изотермической поверхности к площади dS этой поверхности называют поверхностной плотностью теплового потока (или вектором плотности теплового потока), обозначают j и выражают в ваттах на квадратный метр (Вт/м2):
[pic]. (2.11)
Вектор плотности теплового потока направлен по нормали к
изотермической поверхности в сторону убывания температуры. Векторы j и grad
T лежат на одной прямой, но направлены в противоположные стороны.
Тепловой поток q, прошедший сквозь произвольную поверхность S, находят из выражения
Рекомендуем скачать другие рефераты по теме: контрольная работа 1, контрольные 7 класс.
Категории:
Предыдущая страница реферата | 1 2 3 4 5 6 7 8 9 10 11 | Следующая страница реферата