Упругие волны
| Категория реферата: Рефераты по физике
| Теги реферата: решебник по физике, реферат значение
| Добавил(а) на сайт: Tihonenko.
Предыдущая страница реферата | 1 2 3 4 5 6 7 8 9 10 11 | Следующая страница реферата
(относительное удлинение при упругих деформациях бывает много меньше единицы. Поэтому ?? , так что слагаемым ?? в сумме ?x+??, можно пренебречь).
Подставив найденные значения массы, ускорения и силы в уравнение второго закона Ньютона, получим
Наконец, сократив на S?x, придем к уравнению
которое представляет собой волновое уравнение, написанное для случая, когда
? не зависит от у и z. Сопоставление уравнений (4.7) и (5.6) дает, что
Таким образом, фазовая скорость продольных упругих волн равна корню квадратному из модуля Юнга, деленного на плотность среды. Аналогичные вычисления для поперечных волн приводят к выражению
где G – модуль сдвига.
§ 6. Энергия упругой волны
Пусть в некоторой среде распространяется в направлении оси х плоская продольная волна
( = a cos ( (t - kx + ( )
Выделим в среде элементарный объем ?V, настолько малый, чтобы скорость движения и деформацию во всех точках этого объема можно было считать одинаковыми и равными, соответственно, и .
Выделенный нами объем обладает кинетической энергией
(??V – масса объема, – его скорость).
Согласно формуле (25.4) 1-го тома рассматриваемый объем обладает также потенциальной энергией упругой деформации
(? = – относительное удлинение цилиндра, Е — модуль Юнга среды).
Заменим в соответствии с (5.7) модуль Юнга через ?v2 (? – плотность среды, v – фазовая скорость волны). Тогда выражение для потенциальной энергии
объема ?V примет вид
Выражения (6.2) и (6.3) в сумме дают полную энергию
Разделив эту энергию на объем ?V, в котором она содержится, получим плотность энергии
Дифференцирование уравнения (6.1) один раз по t, другой раз по x дает
Подставив эти выражения в формулу (6.4) и приняв во внимание, что k2v2 =
?2, получим
В случае поперечной волны для плотности энергии получается такое же
выражение.
Из (6.5) следует, что плотность энергии в каждый момент времени в разных точках пространства различна. В одной и той же точке плотность энергии изменяется со временем по закону квадрата синуса. Среднее значение квадрата синуса равно 1/2. Соответственно среднее по времени значение плотности энергии в каждой точке среды равно
Плотность энергии (6.5) и ее среднее значение (6.6) пропорциональны
плотности среды ?, квадрату частоты ? и квадрату амплитуды волны а.
Подобная зависимость имеет место не только для незатухающей плоскости
волны, но и для других видов волн (плоской затухающей, сферической и т.
д.).
Итак, среда, в которой распространяется волна, обладает дополнительным запасом энергии. Эта энергия доставляется от источника колебаний в различные точки среды самой волной; следовательно, волна переносит с собой энергию. Количество энергии, переносимое волной через некоторую поверхность в единицу времени, называется потоком энергии через эту поверхность. Если через данную поверхность переносится за время dt энергия dW, то поток энергии ? равен
Поток энергии – скалярная величина, размерность которой равна размерности
энергии, деленной на размерность времени, т. е. совпадает с размерностью
мощности. В соответствии с этим ? измеряется в ваттах, эрг/с и т. п.
Поток энергии в разных точках среды может быть различной интенсивности. Для характеристики течения энергии в разных точках пространства вводится векторная величина, называемая плотностью потока энергии. Эта величина численно равна потоку энергии через единичную площадку, помещенную в данной точке перпендикулярно к направлению, в котором переносится энергия. Направление вектора плотности потока энергии совпадает с направлением переноса энергии.
Пусть через площадку , перпендикулярную к направлению распространения волны, переносится за время ?t энергия ?W. Тогда плотность потока энергии равна
Рекомендуем скачать другие рефераты по теме: bestreferat ru, пример дипломной работы.
Категории:
Предыдущая страница реферата | 1 2 3 4 5 6 7 8 9 10 11 | Следующая страница реферата