Способы кодирования информации и порядок преобразования десятичных чисел в двоичные и наоборот в информатике
| Категория реферата: Рефераты по информатике, программированию
| Теги реферата: рим реферат, отчет по производственной практике
| Добавил(а) на сайт: Shmyrjov.
1 2 3 4 5 6 7 8 9 10 11 | Следующая страница реферата
Способы кодирования информации и порядок преобразования десятичных чисел в двоичные и наоборот в информатике и вычислительной технике
Реферат по дисциплине: “Введение в специальность 6.01010036” Профессиональное обучение компьютерным технологиям в преподавании и обучении»
Выполнил студент группы ДГ-К5-1 Ячменёв Д.А.
Украинская инженерно-педагогическая академия
Стаханов 2005
1. Как представляется информация
Издавна люди пользовались шифрами. Самыми простыми и удобными являются цифровые шифры. Например, основными цветами радуги являются красный, оранжевый, желтый, зеленый, голубой, синий, фиолетовый. Их можно пронумеровать в перечисленном порядке цифрами от 1 до 7.
Музыкальное произведение записывается с помощью нот. Основными нотами музыкального ряда являются до, ре, ми, фа, соль, ля, си. Их тоже можно пронумеровать цифрами от 1 до 7.
Дни недели нумеруются этими же цифрами. Таким образом, разнообразная информация — цвета, ноты и дни недели — может быть представлена единым способом — с помощью цифр.
Для обработки компьютером любая информация представляется в виде чисел, записанных с помощью цифр. Цифры представляются электрическими сигналами, с которыми работает компьютер. Для удобства различения в компьютере используются сигналы двух уровней. Один из них соответствует цифре 1, другой — цифре 0. Цифры 0 и 1 называются двоичными. Они являются символами, из которых состоит язык, понимаемый и используемый компьютером. Информация, с которой работает компьютер, «кодируется» с помощью этого языка. Таким образом, любая информация в компьютере представляется с помощью двоичных цифр. Наименьшим количеством информации является одно из двух возможных значений — 0 или 1. Такое количество информации называется бит (bit сокр. от англ. binary digit — двоичная цифра). Равновероятными являются события, появление которых одинаково возможно. Например, при бросании монеты возможность выпадения «цифры» или «герба» одинакова. Для однозначного определения одного из двух событий — «цифра» или «герб» — достаточно одного бита информации: 0 — «цифра», 1 — «герб» (или наоборот).
Бит является наименьшей единицей измерения количества информации в компьютере. Теперь следует научиться представлять любое число в виде комбинации нулей и единиц. Это представление должно быть однозначным, т.е. различным числам должны соответствовать разные комбинации.
2. Десятичная система счисления
Система счисления — это система записи чисел с помощью определенного набора цифр. В привычной нам системе записи чисел — десятичной системе счисления — для записи чисел используется десять цифр: 0,1,2,3,4,5,6,7,8,9. В этой системе любое целое неотрицательное число представляется с помощью степеней числа 10 (100=1; 101=10; 102=100; 103=1000; 104=10000,...). Число 10 является основанием этой системы счисления.
Действительно, если число меньше 10, то записывается соответствующая ему одна цифра.
Если число больше либо равно 10, но меньше 100, то оно представляется двумя цифрами: первая указывает количество полных десятков, содержащихся в числе, вторая — количество единиц в последнем неполном десятке.
Например:
87=80+7=8·10+7=8·101+7·100=8710.
Индекс внизу указывает систему счисления, в которой записано исходное число. Если число больше либо равно 100, но меньше 1000, то для его записи используется уже три цифры. Первая цифра — это количество полных сотен, содержащихся в числе, вторая цифра — количество полных десятков в последней неполной сотне, третья цифра — количество единиц в последнем неполном десятке.
Например:
645=600+40+5=6·100+4·10+5=6·102+4·101+5·100=64510.
При таком подходе для представления числа, большего либо равного 1000, но меньшего 10000, требуется уже четыре цифры. Первая цифра — количество полных тысяч, вторая — количество полных сотен, третья — количество полных десятков и четвертая — количество единиц.
Например:
2756=2000+700+50+6=2·1000+7·100+5·10+6=2·103+7·102+5·101+6·100=275610.
Количество цифр, используемых для десятичного представления числа, на единицу больше, чем показатель наибольшей степени 10, содержащейся в числе. Это связано с тем, что в представлении участвует нулевая степень числа 10.
Таким образом, любое целое неотрицательное число в десятичной системе счисления представляется в виде:
где каждый из коэффициентов an, an-1,···, a1, a0 является одной из цифр от 0 до 9, называемых десятичными цифрами, причем an не равно 0. В десятичной системе записи числа первой записывается цифра an , второй — цифра an-1 и т.д., последней — цифра a0. Таким образом, десятичной записью целого неотрицательного числа является последовательность цифр ап ап-1 ... а0, являющихся коэффициентами представления этого числа в виде (1).
Общее количество цифр в десятичной записи числа равно количеству коэффициентов в представлении (1), т.е. n+1, где п — показатель наибольшей степени числа 10, содержащейся в исходном числе.
Рекомендуем скачать другие рефераты по теме: рефераты по истории, бесплатные доклады.
Категории:
1 2 3 4 5 6 7 8 9 10 11 | Следующая страница реферата