Алгебраические числа
| Категория реферата: Рефераты по математике
| Теги реферата: баллов, скачать сообщение
| Добавил(а) на сайт: Дёмин.
Предыдущая страница реферата | 1 2 3 4 5 6 | Следующая страница реферата
5, 7 (N, но 5-7=-2 (N,
3, 2(N, но 3:2=1,5 (N
2) Множество целых чисел Z замкнуто относительно сложения, вычитания и умножения.
3) Множество чисел вида 2к, к(N, замкнуто относительно умножения и деления.
2к(2l=2k+l
2к:2l=2k-l
В связи с замкнутостью действий на множестве выделились классы
числовых множеств.
Рассмотрим один их классов, называемых полем.
Определение 2: Множество чисел М, содержащие не менее двух чисел, называется числовым полем, если оно замкнуто относительно действий сложения, вычитания, умножения и деления.
Последнее означает, что для любых a, b (M, должно иметь место a+b, a- b, a*b (M. Так же для любого a(M и любого b(0 из М, должно выполняться a:b(M.
Пример:
Среди важнейших числовых полей наиболее важными являются:
1) поле всех рациональных чисел;
2) поле всех вещественных чисел;
3) поле всех комплексных чисел.
Что касается множества всех целых чисел, то оно не является числовым полем, ибо не замкнуто относительно деления.
Существует бесконечно много числовых полей. Нас, в данном случае интересует поле алгебраических чисел.
2.2 Определение алгебраического числа.
Существуют различные признаки, по которым их общего множества Z выделяю те или иные подмножества, подвергаемые специальному изучению. С точки зрения важного для алгебры понятия алгебраического уравнения, естественным представляется выделение классов чисел, являющихся корнями алгебраических уравнений, коэффициенты которых принадлежат тому или иному классу чисел.
Определение 3: Число Z называется алгебраическим, если оно является корнем какого-нибудь алгебраического уравнения с целыми коэффициентами: anxn+an-1xn-1+…+a1x+a0=0
(a0, a1, … ,an(Z; an(0), т.е. выполняется: anzn+an-1zn-1+…+a1z+a0=0
Числа не являющиеся алгебраическими называются трансцендентными.
В определении алгебраического числа можно допустить, чтобы коэффициенты a0, a1, … ,an-1, an были любыми рациональными числами, поскольку, умножив левую и правую части уравнения на целое число, являющиеся общим кратным знаменателем всех коэффициентов, мы получили уравнение с целыми коэффициентами, корнем которого будет наше число.
К алгебраическим числам принадлежат, в частности, и все рациональные числа. Действительно, рациональное число z=[pic] (p, q(N) очевидно является корнем уравнения: qx-p=0.
Также всякое значение корня любой степени из рационального числа является алгебраическим числом. Действительно, число z=[pic] (p, q(N) является корнем уравнения: qxn-p=0.
Существуют и другие алгебраические числа, нежели указанное выше.
Пример:
Рекомендуем скачать другие рефераты по теме: реферат сила, скачать контрольную.
Категории:
Предыдущая страница реферата | 1 2 3 4 5 6 | Следующая страница реферата