* Алгебры и их применение
| Категория реферата: Рефераты по математике
| Теги реферата: изложение 8 класс, курсовые работы бесплатно
| Добавил(а) на сайт: Jandiev.
Предыдущая страница реферата | 9 10 11 12 13 14 15 16 17 18 19 | Следующая страница реферата
1.3. Двумерные *-представления *-алгебры P2 . Обозначим через Нк область значений оператора Рк при к = 1,2. Пусть Нк┴ - ортогональное дополнение подпространства Нк (к = 1,2) в Н. Тогда Н=H1Н1┴ , Н=H2Н2┴
Введем дополнительные обозначения :
Н0,0 = Н1┴ ∩Н2┴, Н0,1 = Н1┴ ∩Н2, Н1,0 = Н1 ∩Н2┴, Н1,1 = Н1 ∩Н2. (1.1.)
Пусть dim H = 2. предположим, что существуют i и j такие, что Hij нетривиально, то есть dim Hij =1. Пусть, например, dim Н1,0 = 1 (остальные случаи аналогичны). Тогда в H существует ненулевой вектор h такой, что Н1,0 = л.о. {h}, но тогда P1h = h, P2h = 0; следовательно Н1,0 инвариантное подпространство. Значит в этом случае *-представление π не может быть неприводимым.
Будем считать, что Hij ={0} для любых i = 0, 1 и j =0, 1, (то есть Hij линейно независимы) и dim H1 = dim H2 =1. Тогда в Н можно найти два ортогональных базиса {e1, e2} и {g1, g2}, в которых матрицы операторов Р1 и Р2 имеют вид . Найдем матрицу оператора Р2 в базисе {e1, e2}.
Пусть g1 = a11e1 + a12 e2
g2 = a21e1 + a22e2
e1 = b11g1 + b12g2
e2 = b21g1 + b22g2
Рассмотрим векторы h1 = eite1 и h2 = eile2, тогда
|| h1 || = || eite1 || = || e1 || = 1, || h2 || = || eile2 || = || e2 || = 1
(h1 ,h2 ) = (eite1 , eile2) = ei(t-l)(e1, e2 ) = 0, то есть {h1 ,h2} – ортонормированный базис.
Р1h1 =ei t Р1 e1 = h1, Р1h2 =eil Р1 e2 = 0.
Значит в базисе {h1 ,h2} матрица оператора Р1 также имеет вид . Тогда можно считать, что a11, a12 > 0 (так как, например, a11 e1=|a11| eite1 =|a11| h1)
(e1, e2 ) = 0, значит a11 a21 = a12 a22 = 0 или , тогда существует такое комплексное число r, что
a22 = - ra11
a21 = ra12
Базис (e1, e2 ) ортонормированный; следовательно
a112 + a122 = 1
|a22 |2 + |a21 |2 = 0
тогда | r | = 1.
Р2 e1 = Р2 ( b11g1 + b12g2) = b11g1 = b11a11e1 + b11a12e2,
Р2 e2 = Р2 ( b21g1 + b22g2) = b21g1 = b21a11e1 + b21a12e2.
Найдем b11 и b21:
e1 = b11g1 + b12g2 = b11 (a11e1 + a12 e2) + b12 (a21e1 + a22e2) = (b11a11 + b12a12)e1 + (b11a12 + b12a22)e2,
Рекомендуем скачать другие рефераты по теме: решебник 6, евгений сочинение.
Категории:
Предыдущая страница реферата | 9 10 11 12 13 14 15 16 17 18 19 | Следующая страница реферата