* Алгебры и их применение
| Категория реферата: Рефераты по математике
| Теги реферата: изложение 8 класс, курсовые работы бесплатно
| Добавил(а) на сайт: Jandiev.
Предыдущая страница реферата | 1 2 3 4 5 6 7 8 9 10 11 | Следующая страница реферата
Доказательство. Действительно, если е΄ - также единица в А, то
е΄х = хе΄ = х, для всех хА (1.2.)
Полагая в (1.1.) х = е΄, а в (1.2.) х = е, получим:
ее΄ = е΄е = е΄ и е΄е = ее΄ =е, следовательно е΄ = е.
Теорема 1.2. Всякую алгебру А без единицы можно рассматривать как подалгебру некоторой алгебры А΄ с единицей.
Доказательство. Искомая алгебра должна содержать все суммы х΄=αе + х, хА; с другой стороны, совокупность всех таких сумм образует алгебру А΄, в которой основные операции определяются формулами:
β(αе + х) = βαе + βх, (α1е + х1) + (α2е + х2) = (α1 + α2)е + (х1 + х2),
(α1 е + х1)(α2 е+ х2 )=α1 α2 е +α1 х2 +α2 х1 + х1 х2 (1.3.)
Каждый элемент х΄ из А΄ представляется единственным образом в виде
х΄ = αе + х, хА, так как по условию А не содержит единицы. Поэтому А΄ можно реализовать как совокупность всех формальных сумм х΄ = αе + х, хА, в которой основные операции определяются формулами (1.3.); сама алгебра А получится при α = 0.
Алгебру А΄ можно также реализовать как совокупность всех пар (α, х), хА, в которой основные операции определяются по формулам:
β (α, х) = (βα, βх), (α1, х1) + (α2, х2) = (α1 + α2, х1 + х2),
(α1, х1)(α2, х2) = (α1α2, α1х2 + α2 х1 + х1х2), (1.4.)
аналогично тому, как определяются комплексные числа. Саму алгебру А можно тогда рассматривать как совокупность всех пар (0, х), хА и не делать различия между х и (0, х). Полагая е = (0, х), мы получим:
(α, х) = α(1, 0) + (0, х) = αе + х,
так что вторая реализация алгебры А΄ равносильна первой.
Переход от А к А΄ называется присоединением единицы.
Определение 1.4. Элемент y называется левым обратным элемента х, если xy = e. Элемент z называется правым обратным элемента х, если xz = e.
Если элемент х имеет и левый, и правый обратные, то все левые и правые обратные элемента х совпадают. Действительно, умножая обе части равенства yx = e справа на z, получим
z = (yx)z = y(xz) = ye,
В этом случае говорят, что существует обратный х-1 элемента х.
1.4. Простейшие свойства - алгебр
Определение 1.5. Элемент х *-алгебры А называется эрмитовым или самосопряженным, если х* = х, нормальным, если хх* = х*х. Идемпотентный эрмитов элемент называется проектором. Элемент алгебры называется идемпотентным, если все его (натуральные) степени совпадают.
Каждый эрмитов элемент нормален. Множество эрмитовых элементов есть вещественное векторное подпространство А. Если х и y эрмитовы, то (xy)*= y*x* = yx; следовательно, xy эрмитов, если x и y перестановочны. Для каждого хА элементы хх* и х*х эрмитовы. Но, вообще говоря, эрмитов элемент не всегда представим в этом виде, как показывает пример 1 из пункта 1.2. Действительно, для любого zC , но если z действительно отрицательное число, то его нельзя представить в виде .
Теорема 1.3. Всякий элемент х *-алгебры А можно представить, и притом единственным образом, в виде х = х1 +iх2, где х1, х2 – эрмитовы элементы.
Рекомендуем скачать другие рефераты по теме: решебник 6, евгений сочинение.
Категории:
Предыдущая страница реферата | 1 2 3 4 5 6 7 8 9 10 11 | Следующая страница реферата