Двойной интеграл в механике и геометрии
| Категория реферата: Рефераты по математике
| Теги реферата: реферат почему ответы по алгебре
| Добавил(а) на сайт: Бугайчук.
Предыдущая страница реферата | 3 4 5 6 7 8 9 10 11 12 13 | Следующая страница реферата
Примеры. 1) Найдём двойной интеграл от функции
![]()
по прямоугольной области D ![]()
![]()
Геометрически I выражает объём четырёхугольной призмы

(рис.12), основанием которой служит прямоугольник D, усечённый плоскостью
.
Возьмём повторный интеграл сначала по y, затем по x:

То же самое получим, интегрируя сначала по x, а затем по y:

2) Вычислим двойной интеграл
![]()
по области D, ограниченной линиями y=x и y=x2. Область D

изображена на рис.13. Интегрируя сначала по y, а потом по x,
получаем

Правильность результата можно проверить, изменив порядок интегрирования :

Вычислим объём тела, ограниченного цилиндрическими поверхностями
и плоскостью z=0 (рис.14,а).

Поверхность, ограничивающая тело сверху, имеет уравнение z=4-y2. Область интегрирования D получается в результате пересечения параболы
с линией пересечения цилиндра z=4-y2 и плоскости z=0, т.е. с прямой y=2 (Рис. 14, б). Ввиду симметрии тела относительно плоскости Oyz вычисляем половину искомого объёма :
Рекомендуем скачать другие рефераты по теме: доклад по химии, банк рефератов и курсовых.
Категории:
Предыдущая страница реферата | 3 4 5 6 7 8 9 10 11 12 13 | Следующая страница реферата
Главная