Дзета-функция Римана
| Категория реферата: Рефераты по математике
| Теги реферата: bestreferat, сочинения по русскому языку
| Добавил(а) на сайт: Петронилла.
Предыдущая страница реферата | 1 2 3 4 5
Но непрерывна и имеет ограниченную вариацию на любом конечном интервале, а так как , то () и (). Следовательно, абсолютно интегрируема на при . Поэтому при , или при . Интеграл в правой части абсолютно сходится, так как ограниченна при , вне некоторой окрестности точки . В окрестности и можно положить , где ограниченна при , и имеет логарифмический порядок при . Далее, . Первый член равен сумме вычетов в особых точках, расположенных слева от прямой , то есть . Во втором члене можно положить , так как имеет при лишь логарифмическую особенность. Следовательно, . Последний интеграл стремится к нулю при . Значит,
(4).
Чтобы перейти обратно к , используем следующую лемму.
Пусть положительна и не убывает и пусть при . Тогда .
Действительно, если - данное положительное число, то (). Отсюда получаем для любого . Но так как не убывает, то . Следовательно, . Полагая, например, , получаем .
Аналогично, рассматривая , получаем , значит , что и требовалось доказать.
Применяя лемму, из (4) имеем, что , , поэтому и теорема доказана.
Для ознакомления с более глубокими результатами теории дзета-функции Римана могу отослать заинтересованного читателя к прилагаемому списку использованной литературы.
Список литературы
Титчмарш Е.К. Теория дзета-функции Римана. Череповец, 2000 г.
Фихтенгольц Г.М. Курс дифференциального и интегрального исчисления, том II. М.,1970 г.
Привалов И.И. Введение в теорию функций комплексного переменного. М.,1999 г.
Айерленд К., Роузен М. Классическое введение в современную теорию чисел. М.,1987 г.
Шафаревич З.А. Теория чисел. М.,1986г.
Скачали данный реферат: Виленин, Ugolev, Kamenskih, Chichikov, Филофей, Фирс.
Последние просмотренные рефераты на тему: семья реферат, мировая торговля, курсовая работа по праву, реферат знания.
Категории:
Предыдущая страница реферата | 1 2 3 4 5