Экстремумы функций
| Категория реферата: Рефераты по математике
| Теги реферата: организация реферат, сочинение 6
| Добавил(а) на сайт: Юлий.
Предыдущая страница реферата | 1 2 3 4 5 | Следующая страница реферата
Таким образом можно показать, что в точке (x10,x20,…,xn0) и остальные частные производные равны нулю.
Итак, «подозрительными» на экстремум являются те точки, в которых частные производные первого порядка все обращаются в нуль: их координаты можно найти, решив систему уравнений fx1’(x10,x20,…,xn0)=0
……………………. (5.1) f ’xn(x10,x20,…,xn0)=0
Как и в случае функции одной переменной, подобные точки называются стационарными.
Замечения :Необходимое условие существования экстремума в случае дифференцируемой функции кратко можно записать так : d f(x1,x2,…,xn)=0 так как, если fx1’= fx2’=…= f ’xn , то каковы бы ни были dx1,dx2,…,dxn всегда f(x1,x2 d,…,xn)= fx1’ dx1+ fx2’ dx2+…+ f ’xn dxn=0
И обратно : если в данной точке тождественно выполняется это условие, то ввиду произвольности dx1,dx2,…,dxn производные fx1’, fx2’,…, f ’xn порознь равны нулю.
Обычно, рассматриваемая функция f(x1,x2,…,xn) имеет (конечные)
частные производные во всей области, и тогда точки, доставляющие
функции экстреммы, следует искать лишь среди стационарных точек.
Однако встречаются случаи, когда в отдельных точках некоторые частные
производные имеют бесконечные значения или вовсе не существуют (в то
время как остальные равны нулю). Подобные точки, собственно, тоже
следует причислить к «подозрительным» по экстремуму, наряду со
стационарными.
Иногда дается и не прибегая к достаточным условиям выяснить характер стационарной точки функции. Так, если из условия задачи непременно следует, что рассматриваемая функция имеет где-то максимум или минимум и при этом системе уравнений (5.1) удовлетворяет только одна точка, то ясно, что эта точка и будет искомой точкой экстремума функции.
Заметим, наконец, что точками экстремума непрерывной функции могут быть точки, в которых функция недифференцируема (им соответствуюя, например, острия поверхности – графика функции).
5.2.Достаточные условия экстремума.
Так же как и для функции одной переменной, необходимый признак экстремума в случае многих переменных не является достаточным. Это значит, что из равенства нулю частных производных в данной точке вовсе не следует, что этаточка обязательно является точкой эксремума.
Достаточные условия экстремума для функций нескольких переменных носит значительно более сложный характер, чем для функции одной переменной.
Пусть функция f(x1,x2,…,xn) определена, непрерывна и имеет непрерывные производные первого и второго порядковокрестности некоторой стационарной точки (x10,x20,…,xn0).Разлагая разность
= f(x1,x2,…,xn)-f(x10,x20,…,xn0) по формyле Тейлора, получим
= { fx ’’ x12+fx ’’ x22+…+fx ’’ xn2+2fx1x2 ’’ x1 x2+ +2fx1x3
’’ x1 x3+…+2fxn-1xn ’’ xn-1 xn}= fxixj ’’ xi xj где x= xi-xi0 ; производные все вычеслены в некоторой точке
(x10+0 x1, x20+0 x2,…, xn0+0 xn) (00,…, a21 a22… a2n a31 a32 a33
…………………
an1 an2… ann
Так как определенная отрицательная форма с изменением знака всех её членов переходит в определенню положительную, и обратно, то отсюда легко найти и характеристику отицательной формы : она дается цепью неравенств, которая получается из написанной выше изменением смысла неравенств через одно (начиная с первого).
Пользуясь этими понятиями. Сформулируем достаточные для существования экстремума условия :
Если второй дифференциал,т. е. квадратичная форма aik xi xk (5.6)
со значениями (5.2) коэффициентов – оказывается определенной
положительной (отрицательной) формой, то в используемой точке
(x10,x20,…, xn0) будет собственный минимум (максимум).
Для доказательства введем расстояние
= x12+…+ xn2 между точками (x10,x20,…,xn0) и (x1,x2,…,xn). Вынося в (5.5) за скобку и полагая xi (i=1,2,…,n)
перепишем выражение для в виде
Рекомендуем скачать другие рефераты по теме: доклад, решебник по алгебре класс.
Категории:
Предыдущая страница реферата | 1 2 3 4 5 | Следующая страница реферата