Элементы теории множеств
| Категория реферата: Рефераты по математике
| Теги реферата: банк курсовых, ответы на билеты
| Добавил(а) на сайт: Альфия.
Предыдущая страница реферата | 5 6 7 8 9 10 11 12 13 14 15 | Следующая страница реферата
h = 1: .
h = 2: .
h = 3: .
h = 4 …
Приписывая последовательно этим рациональным числам номера 1, 2, 3… мы пронумеруем все рациональные числа. Следовательно, множество рациональных чисел счетно согласно определению.
3.6. Несчетные множества. Мощность континуума
Теорема. Мощность действительных чисел отрезка [0;1] больше чем счетное.
Доказательство (от противного).
Предположим, мощность отрезка [0;1] счетна. Т.е. можно установить взаимнооднозначное соответствие:
1 ~ 0.3751…
2 ~ 0.2151…
3 ~ 0.2216…
…
Построим число a из пронумерованных чисел согласно правилам:
Из первого числа возьмем первую цифру после запятой, из второго числа – вторую, из третьего – третью и так далее.
Если текущая цифра равна единице, то заменим ее на двойку. В противном случае цифру заменим на единицу.
В результате получим: a = 0.122…
a [0;1] и числу a соответствует nN.
Это противоречит тому, что, когда мы изменили a, мы изменили цифру, стоящую на n-ном десятичном месте. Следовательно, a не может стоять на n-ном месте. Следовательно, мы пришли к противоречию и, значит, мощность множества действительных чисел несчетна.
Мощность множества всех действительных чисел (или, что то же, множества всех точек числовой оси) обозначается символом c (“континуум”). Поскольку множество всех действительных чисел несчётно, то א0 < c.
Континуум – не самая большая из бесконечных мощностей. Так, мощность множества всех подмножеств точек числовой оси больше, чем мощность самого множества всех точек оси. Она обозначается 2c и называется гиперконтинуумом.
Глава 4. Аксиоматика теории множеств
4.1. Аксиомы теории множеств
Современная теория множеств строится на системе аксиом — утверждений, принимаемых без доказательства, из которых выводятся все теоремы и утверждения теории множеств.
Система аксиом Цермело — Френкеля (ZF) является стандартной системой аксиом для теории множеств. Эта и подобные ей системы аксиом любопытны потому, что любая математическая теория может быть «переведена» на язык теории множеств таким образом, что теоремы этой теории станут теоремами о множествах, доказуемыми из аксиом ZF.
1. Аксиома объемности. Если два множества имеют одни и те же элементы, они тождественны.
Рекомендуем скачать другие рефераты по теме: ответы на сканворды в одноклассниках, реферат на тему технология.
Категории:
Предыдущая страница реферата | 5 6 7 8 9 10 11 12 13 14 15 | Следующая страница реферата