Элементы теории множеств
| Категория реферата: Рефераты по математике
| Теги реферата: банк курсовых, ответы на билеты
| Добавил(а) на сайт: Альфия.
Предыдущая страница реферата | 5 6 7 8 9 10 11 12 13 14 15 | Следующая страница реферата
"A, B: A=B Û "c, cÎAÛ cÎB.
2. Аксиома пустого множества. Существует пустое множество , которое не содержит элементов.
$: "a, aÏ.
3. Аксиома пары. Для любых множеств A и B существует множество C такое, что A и B являются его единственными элементами. Множество C обозначается {A, B} и называется неупорядоченной парой A и B. Если A = B, то C состоит из одного элемента.
"A, "B, $C: "D, DÍCÛ(D=A Ú D=B).
4. Аксиома объединения. Для любого множества A существует множество B=a1Èa2È…Èan – объединение всех элементов множества A, состоящее из тех и только тех элементов, которые содержатся в элементах множества А.
"A, $B: "C, CÍB Û $D, (CÍD Ù DÍA).
5. Аксиома бесконечности. Существует множество, которое содержит ∅ в качестве своего элемента, и такое, что если а есть элемент этого множества, тогда последовательность aÈ{a} есть также элемент этого множества.
$w: Îw Ù "x, xÎw Þ {x,{x}}Îw.
6. Аксиома регулярности. Если A – непустое множество, тогда имеется подмножество В множества A, такое, что не имеется множеств, которые принадлежат обоим множествам А и В.
7. Аксиома выделения. Любому множеству A и свойству j отвечает множество B, элементами которого являются те и только те элементы A, которые обладают свойством j.
"A $B: "c, cÎB Û (cÎA Ù j(c)).
8. Аксиома основания. Каждое непустое множество S содержит подмножество A такое, что SÇA=.
"S, S¹ Þ $A, AÍS Ù AÇS=.
9. Аксиома выбора. Для любого семейства попарно непересекающихся непустых множеств существует множество C такое, что, каково бы ни было множество X данного семейства, множество состоит из одного элемента.
Приведенный список аксиом не является каким-то каноническим. Возможны другие перечни и другие аксиомы.
Математики и философы, как уже было отмечено, расходятся в понимании основной цели аксиоматизации теории множеств. Многие полагают (это стало “учебной” точкой зрения), что суть аксиоматизации состоит в ограничении области множеств, с которыми математики уже имели и имеют дело, с целью недопущения парадоксов.
Аксиоматика теории множеств позволяет разрешить фундаментальную философскую проблему относительно природы математики. В аксиоматической теории множеств противоположность платонистской и конструктивистской позиций практически невидима. Если математика, как полагает платонист, мыслится как открытие уже существующего универсума множеств, тогда аксиомы прямо утверждают существование множества, удовлетворяющего определенным условиям. Если же математика, как полагает концептуалист, является человеческим изобретением, тогда аксиомы утверждают способ порождения из одних заданных множеств других множеств. Математика в этом смысле представляет собой структуру, в которой непротиворечиво демонстрируется существование множества. Другими словами, аксиомы позволяют так ограничить понятие множества, чтобы избежать парадоксов независимо от взгляда на природу математики.
4.2. Парадоксы теории множеств
Необходимость введения аксиоматики была связана не с мнимыми противоречиями теории множеств. Эти противоречия обнаружились не в теории Кантора и Дедекинда, а в теориях, придуманных самими логиками, специально с целью обнаружить в них противоречия.
Аксиома Фреге. Для любого свойства Р существует множество x всех объектов х, обладающих свойством Р.
Парадокс Рассела. Пусть X - множество всех множеств, которые не являются собственными элементами. Тогда X в том и только том случае является собственным элементом, когда оно не является собственным элементом.
Доказательство. Предположим, что XÎX. Тогда X является собственным элементом и, значит, не входит в X по определению X. Таким образом, XÎXÞXÏX. С другой стороны, если XÏX то X не является собственным элементом и, значит, входит в X по определению X. Таким образом. XÏXÞ XÎX.
Классические формулировки парадокса Рассела.
Парадокс Рассела можно сформулировать и не используя теорию множеств. Вот три классические формулировки этого парадокса.
Рекомендуем скачать другие рефераты по теме: ответы на сканворды в одноклассниках, реферат на тему технология.
Категории:
Предыдущая страница реферата | 5 6 7 8 9 10 11 12 13 14 15 | Следующая страница реферата