Физика как источник теорем дифференциального исчисления
| Категория реферата: Рефераты по математике
| Теги реферата: древний египет реферат, скачать курсовую работу
| Добавил(а) на сайт: Indik.
Предыдущая страница реферата | 1 2 3 4 5 6 7 8 | Следующая страница реферата
Для выяснения сущности вопроса IV воспользуемся теми же обозначениями. Верный ответ состоит в том, что скорость тела в момент наибольшего удаления равна нулю. Если t0 - момент наибольшего удаления, то v(t0) = 0, или s'(O = 0. Получается, что если s(b) = s(a) (тело возвращается в исходное положение), то существует момент времени t0, такой, что s′(t0) = 0. Это утверждение является теоремой Ролля. Результаты эксперимента показывают, что на интуитивном, физическом уровне 77% респондентов могут самостоятельно сформулировать теорему Ролля, являющуюся одной из основных теорем дифференциального исчисления (последний столбец таблицы, строка с ответом v = 0).
Особого внимания заслуживают две последние клетки последнего столбца таблицы. Дело в том, что теоремы Ролля и Лагранжа занимают центральное место в курсе дифференциального исчисления, поскольку именно из них выводятся основные утверждения, применяемые при исследовании функций и построении их графиков: критерий постоянства функции, достаточное условие монотонности, достаточное условие экстремума. Тот факт, что 57% респондентов в состоянии самостоятельно сформулировать на интуитивном уровне две серьезные математические теоремы, говорит о достаточно хорошей физической интуиции студентов и о том, что эту интуицию следует активно использовать в преподавании дифференциального исчисления. Теоремы Ролля и Лагранжа выводятся чисто логически одна из другой, поэтому оказывается весьма важным тот факт, что 94% респондентов могут на интуитивном уровне самостоятельно сформулировать по крайней мере одну из них. Он говорит о том, что стимулирование физической интуиции при изучении математики встретит достаточно адекватную реакцию практически всей студенческой аудитории.
Данные эксперимента говорят о том, что нет прямой зависимости между ориентацией на физико-математические науки и физической интуицией в исследуемой области и на исследуемом уровне. Так, данные для экономистов (специальность "бухгалтерский учет") показывают, что они сопоставимы с результатами математиков и даже физиков (см. строки с правильными ответами и две последние строки).
Интересно, что респонденты не связывали задаваемые им физические вопросы с математическим материалом, о чем свидетельствовали собеседования, проводимые с аудитори-ей.
Достоверность полученных результатов оценивалась с помощью критерия "хи-квадрат". Подсчет показал следующее: вероятность того, что данные цифры получены в результате случайного (равновероятного) выбора одного из возможных априорных ответов, много меньше 0,001.
Итак, данные эксперимента говорят о том, что физическая интуиция студентов представляет собой значимую величину, активное использование которой в процессе преподавания является вполне естественным. Ниже мы покажем, что ее использование не только естественно, но и весьма эффективно.
2. Логика доказательств и физическое происхождение условий некоторых математических теорем
Выведем из физических соображений некоторые ограничения на функцию, которая может служить законом движения макроскопического тела, а затем сравним их с условиями основных теорем дифференциального исчисления.
(А) Начнем с простого соображения о том, что реальный физический эксперимент имеет свое начало и конец, т.е. протекает за конечный отрезок времени. В силу этого можно считать, что закон движения тела представляет собой функцию, определенную на отрезке [a, b].
(Б) Рассмотрим более глубокий вопрос о том, всякая ли числовая функция числового аргумента может служить законом движения для некоторого физического тела. Наивный, но любопытный студент может задать такой вопрос в отношении многих хорошо известных ему функций: s(t) = t2, s(t) = t, s(t) = sint, s(t) = tgt, s(t) = sgnt и т.д. При этом в некоторых случаях ответ хорошо известен (равноускоренное и колебательное движение в первом и третьем случае соответственно), а в других отнюдь не очевиден.
На самом деле ответ на поставленный вопрос является отрицательным, поскольку закон движения макроскопического тела является непрерывной функцией. Докажем это на е − δ-языке с помощью эйнштейновского постулата о постоянстве скорости света c. Пусть функция s(t) выражает закон движения тела. Если она разрывна в точке u, то справедливо следующее утверждение:
(Зе > 0)(V5 > 0)(3t, | t − u |< δ) | s(0 - s(u) |≥ ε. (3)
Рассмотрим числа ε и t, фигурирующие в утверждении (3). Подберем число δ достаточно малым для того, чтобы дробь ε оказалась больше скорости света в вакууме:
ε>c. (4)
8 V '
Вычислим теперь модуль средней скорости на промежутке от u до t. Пользуясь двумя неравенствами в соотношении (3) и неравенством (4), получаем, что
. | s(0 - s(u) | ε ε
|t−u | |t−u | δ
а это противоречит положению о недостижимости скорости света физическим телом. Если обращение к эйнштейновскому постулату по каким-либо причинам нежелательно, непрерывность закона движения тела можно пояснить с помощью наглядных соображений, касающихся разрывов того или иного типа. Например, закон движения тела не может иметь "бесконечный" разрыв, поскольку в этом случае материальное тело пройдет бесконечное расстояние за конечное время. Аналогичные рассуждения можно провести в отношении разрывов типа "скачок" и типа "колебание".
Сравним в физическом контексте две функции: функцию s: [0,1) →> R, заданную равенством s(t) =1, и функцию s : [0,1 ] →> R, заданную равенством s(t) =1. Очевидно, что функция s является сужением функции s на некоторое подмножество области определения, или, другими словами, функция s является продолжением функции s на более широкое множество. Хорошо известно, что под действием операции продолжения (сужения) функция может терять некоторые из своих свойств или приобретать новые свойства. В данном случае различие в свойствах имеет физическую природу: функция s может служить законом движения некоторого тела, а функция s не может, поскольку в противном случае тело удалилось бы на бесконечность за конечное время. Функции s и s можно рассматривать в контексте теории рядов, поскольку выражение является суммой бесконечно убывающей геометрической прогрессии
1 +t +t2 +t3 + L. Известно, что областью сходимости этого степенного ряда является интервал (−1,1). Таким образом, для данного примера получаем, что сходимость степенного ряда тесно связана со способностью его суммы служить законом движения тела. (В) Покажем, что среди функций, описывающих движения макроскопического тела, всегда можно выбрать дифференцируемую функцию.
Начнем с примера. Пусть легкий упругий шарик падает на массивную плиту и отскакивает от нее. Для изучения движения шарика построим две модели. Первая модель базируется на следующих допущениях: 1) шарик представляет собой материальную точку; 2) отскок происходит мгновенно. Вторая модель базируется на двух других допущениях: 1) шарик представляет собой тело конечного объема, а закон движения описывает положение центра тяжести шарика; 2) отскок происходит за конечное время за счет деформации шарика. Нетрудно видеть, что первая модель представляет собой функцию, не дифференцируемую в те моменты времени, которые соответствуют моментам отскока. В то же время вторая модель является функцией, дифференцируемой при любых значениях аргумента.
Мы оставляем в стороне вопросы об адекватности данных моделей физическому явлению, об удобстве использования каждой из них, о целесообразности выбора той или иной модели при исследовании движения шарика в разные моменты времени. Здесь мы хотим лишь подчеркнуть, что каждая пара допущений является вполне естественной. Поясним возможность выбора дифференцируемой модели в точных терминах. Известно, что для каждой функции s(t), непрерывной на отрезке [a, b], можно построить интерполяционный многочлен Лагранжа Ln(t) с помощью n узлов интерполирования. Более того, можно выбрать такую последовательность систем узлов, что выражение
I s(t) − Ln(t) | будет равномерно сходиться к нулю при и n → ∞ [3. C. 265]. Это означает, что какова бы ни была точность измерения с помощью физических приборов, существует номер N, такой, что при всех n> N величина | s(t) − Ln(t) | меньше точности измерения. Отсюда следует, что многочлен Лагранжа Ln(t), который является дифференцируемой функцией, можно принять за закон движения тела, причем расчеты с помощью многочлена Ln (t) и измерения при данной точности будут соответствовать друг другу.
К сожалению, приведенное рассуждение не может быть предъявлено в тот момент, когда происходит изучение основных теорем дифференциального исчисления, поскольку теория интерполяции изучается значительно позднее.
Рекомендуем скачать другие рефераты по теме: реферат на тему техника, открытия реферат.
Категории:
Предыдущая страница реферата | 1 2 3 4 5 6 7 8 | Следующая страница реферата