Функциональный анализ
| Категория реферата: Рефераты по математике
| Теги реферата: объект реферата, сочинения 4
| Добавил(а) на сайт: Шпикалов.
Предыдущая страница реферата | 1 2 3 4 5 | Следующая страница реферата
e-сеть для мн-ва В является такое мн-во А, что для любого элемента из В найдется элемент из А, отстоящий от него не далее, чем на e.
Критерий Хаусдорфа. Пусть Х – полное метрическое пр-во и А подмножество в Х. Мн-во А предкомпактно титт, когда для каждого e>0 мн-во А обладает конечной e-сетью.
Сл-е. В конечномерном нормированном пр-ве предкомпактность равносильна ограниченности.
Непрерывные функции на метрических компактах. Эквивалентность норм в Rn.
Теорема. Пусть Х – компактное метрическое пр-во и ¦ - непрерывная на нем числовая ф-я. Тогда ¦ ограниченна на Х и достигает на Х верхней и нижней граней.
Эквивалентными в лин-ом пр-ве Х называются такие две нормы ||×||1 и ||×||2 , что существуют положительные числа a и b для которых справедливо нер-во a||x||1£||x||2£b||x||1 при всех x из X.
Теорема. В конечномерном лин. пр-ве Х любые две нормы эквивалентны.
Теорема Асколи-Арцела (КГ 75).
Теорема Асколи-Арцела. Пусть С(Х) –нормированное пр-во вещественных непрерывных ф-й на метрическом пр-ве Х с нормой ||¦||=max|¦(x)|. Для того чтобы подмножество А мн-ва С(Х) было предкомпактным необх. и дост. Чтобы были оно удовлетворяло следующим условиям:
Мн-во А равномерно ограниченно т.е. для любой функции ¦ существует единое для всех число С, такое что модуль ¦ не превосходит это число: $С "¦ |¦(х)|£С.
Мн-во А равностепенно непрерывно т.е. для любой функции ¦ и для любых двух точек х и у найдутся такие числа e и d, что как только расстояние между точками меньше, чем d разность аргументов функции ¦ меньше e: "¦ "e>0 $d>0, справедливо |¦(х)-¦(у)|<e , если r(х,у)< d.
Критерий предкомпактности единичного шара (КГТ 74).
Теорема. Пусть Х – лин-ое нормированное бесконечномерное пр-во, тогда единичный шар B=x: не является предкомпактным мн-вом.
Евклидовы пр-ва. Неравенство Коши-Буняковского.
Евклидовым называется такое лин-ое пр-во Х если для него справедливы следующие условия:
Определена операция ( , ): Х´Х®С.
(х,х)³0. (х,х)=0 Ûх=0.
.
(aх+bу,z)= a(х,z)+b(y,z).
Утв. Норму в Евклидовом пр-ве можно ввести следующим образом: .
Утв. Метрику в Евклидовом пр-ве можно ввести следующим образом:r(х,у)=||x-y||.
Теорема. Для любых двух элементов х и у из Х справедливо нер-во Коши-Буняковского:
|(x,y)|£||x||×||y||.
Предгильбертовым называется такое лин-ое пр-во Х если для него справедливы следующие условия:
Определена операция ( , ): Х´Х®С.
Рекомендуем скачать другие рефераты по теме: реферат обслуживание, налоги и налогообложение.
Категории:
Предыдущая страница реферата | 1 2 3 4 5 | Следующая страница реферата