Функциональный анализ
| Категория реферата: Рефераты по математике
| Теги реферата: объект реферата, сочинения 4
| Добавил(а) на сайт: Шпикалов.
Предыдущая страница реферата | 1 2 3 4 5
Непрерывным называется такой лин-ый оператор А, что для любой последовательности xn сходящейся к х последовательность А(xn) сходится к А(х).
Ограниченным называется такой лин-ый оператор из лин. пр-ва Х в лин. пр-во Y, что он переводит ограниченное мн-во в ограниченное.
Задача. Оператор непрерывен титт, когда он ограничен.
Задача. Оператор непрерывен титт, когда он непрерывен в одной точке.
Лемма Цорна – Куратовского. Существование разрывных лин-ых функций на бесконечномерном нормированном пр-ве. Теорема Хана-Банаха в действительном случае.
Лин. функционалом определенном на лин-ом пр-ве X называется числовая функция.
Выпуклым фун-лом на действительном лин-ом пр-ве X называется такой фун-л p, что для любых x,y из X и 1³a³0 выполнено соотношение: p(ax+(1-a)y)£ ap(x)+(1-a)p(y).
0 p(ax)= ap(x).Однородно-выпуклым фун-лом называется положительно-однородным выпуклый фун-л.
Продолжением лин-ого фун-ла ¦0, определенного на подпространстве X0 действительного лин-ого пр-ва X называется такой лин-ый фун-л ¦, определенный на X, что¦(x)=¦0(x) для всех x из X0.
Подчиненным фун-лу p(x) на действительном лин-ом пр-ве X называется такой фун-л ¦, что ¦(x)£p(x) для всех x из X.
Теорема Хана-Банаха. Пусть p – однородно-выпуклый фун-л, заданный на действительном лин-ом пр-ве X, и пусть X0 – лин-ое подпр-во X. Пусть ¦0 лин-ый фун-л на X0 , подчиненные на X0 p(x). Тогда ¦0 может быть продолжен до лин-ого фун-ла ¦ на X, подчиненного p(x) на всем X.
Теорема Хана-Банаха в комплексном случае. Ее следствия.
Однородно-выпуклым на комплексном лин-ом пр-ве X мы будем называть такой неотрицательный фун-л p, что для всех x,y из X и всех комплексных чисел l справедливы соотношения: p(x+y)£p(x)+p(y), p(lx)=| l|p(x).
Теорема Хана-Банаха в комплексном случае. Пусть p – однородно-выпуклый фун-л на комплексном пр-ве X, и пусть X0 – лин-ое подпр-во X. Пусть ¦0 лин-ый фун-л на X0, такой, что |¦0 (x)|£p(x) для x из X0. Тогда Существует лин-ый фун-л ¦, являющийся продолжением ¦0, такой, что |¦ (x)|£p(x) для x из X.
Непрерывные лин-ые фун-лы на пр-вах Lp (прямая теорема).
Непрерывные лин-ые фун-лы на пр-вах Lp (обратная теорема).
Непрерывные лин-ые фун-лы на гильбертовом пр-ве.
Непрерывные лин-ые фун-лы на С[а,в] (прямая теорема).
Сопряженные операторы.
Сопряженным пр-вом A* к лин-ому топологическому пр-ву A называется совокупность всех непрерывных лин-ых фун-лов на A.
Сопряженным оператором к лин-ому оператору A, отображающему лин. пр-во X в Y называется такой лин. оператор A*, который отображает пр-во Y* в X*.
Теорема Банаха-Штейнгауза.
Существование непрерывных функций с расходящимися рядами Фурье.
Слабая сходимость. * слабая компактность единичного шара в пр-ве, сопряженном к сепарабельному.
Скачали данный реферат: Makedon, Jasinov, Самуйлов, Shurshalin, Бонифатий, Кучава.
Последние просмотренные рефераты на тему: доклад о животных, курсовики скачать бесплатно, конспекты занятий в детском саду, контрольные бесплатно.
Категории:
Предыдущая страница реферата | 1 2 3 4 5