Исторические проблемы математики. Число и арифметическое действие
| Категория реферата: Рефераты по математике
| Теги реферата: реферат на тему отношения, строительные рефераты
| Добавил(а) на сайт: Витольд.
Предыдущая страница реферата | 1 2 3 4 5 6 7 | Следующая страница реферата
Автор, имеющий неосторожность озаглавить свое сочинение “Что такое число?”, вынужден сразу же уходить от прямого ответа:
“Когда школьник впервые знакомится с математикой, ему говорят, что это – наука о числах и геометрических фигурах. Вузовский курс математики обычно начинается с аналитической геометрии, основная цель которой – выразить геометрические понятия на языке чисел. Таким образом, получается, что числа – это единственный предмет изучения в математике.
Правда, если вы откроете современный научный журнал и попробуете прочитать какую-нибудь статью по математике, то вполне вероятно, что вы не встретите в этой статье ни одного числа “в чистом виде”. Вместо них речь идет о множествах, функциях, операторах, категориях, мотивах и т.д. Однако, во-первых, почти все эти понятия так или иначе опираются на понятие числа, а, во-вторых, конечный результат любой математической теории, как правило, выражается на языке чисел.
Поэтому мне кажется небесполезным обсудить со студентами-математиками вопрос, поставленный в заголовке этой книги.
Разумеется, одно только описание исторического развития понятия числа или обсуждение его философского смысла требует много времени и места. Об этом уже написано немало толстых книг. Моя цель более проста и конкретна – показать, какой смысл придается понятию числа в современной математике, рассказать о задачах, которые возникают в связи с разным пониманием чисел, и о том, как эти задачи решаются. Конечно, в каждом случае я смогу лишь кратко описать самые начала соответствующей теории. Для тех читателей, которые захотят разобраться в ней подробнее, я указываю подходящую литературу” [ 3 ].
Здесь нет ответа на главный вопрос: что же такое число? На деле такой вопрос даже не ставится.
Изящным маневром само “понятие числа” сразу же заменяется его “историческим развитием” (что означает также замену самой математики какой-то ее историей). Или же упоминается “обсуждение его философского смысла” (что тоже означает замену математики философией, проще говоря, неопределенными рассуждениями на тему о числах). И все это вводится вовсе не в основной части текста, а всего лишь к нему предисловии. Как если бы этот вопрос был абсолютно несущественным и второстепенным. Чуть ли не в разделе “да, чуть не забыли”.
И при этом нарочито небрежно, походя, одной фразой. Поскольку, видите ли, требует много времени и места. Так много, что в книге, должно быть, просто не уместилось. Хотя и сообщается, что об этом уже написано много других книг. Которые сам автор, надо думать, уже прочел. Ну и что он там вычитал?
Где требуемое определение этого основного понятия математики? Являющегося также исходным или первичным.
Ответом служит глубокомысленное молчание.
А вот другое сообщение, тоже увиливающее от прямого ответа в область исторического развития понятия числа. Предназначенное для учителей. Это, вероятно, максимум того, что можно вообще узнать в институте:
Что такое число?
В XYIII веке математики считали понятие числа совершенно простым и ясным. “Ничто не является более простым и более известным людям, - указывал Боссю, - чем идея числа”.
Они полагали возможным дать о б щ е е определение понятия числа, способное быть д е й с т в е н н ы м началом логического развития арифметики л ю б ы х ч и с е л. “Надлежит прежде всего о числах иметь ясное понятие”, - писал Эйлер и тут же добавлял, что т о л ь к о п о н и м а н и е п р и р о д ы ч и с е л г а р а н т и р у е т п о н и м а н и е в о з м о ж н ы х д е й с т в и й н а д н и м и и о с т а л ь н ы х и х с в о й с т в. “… всякий способ изображения чисел, - пишет Эйлер, - требует к арифметическим действиям особых правил, которые надлежит производить от свойств оных чисел, кои употребляются”.
Учебники арифметики этого времени часто начинались категорическим утверждением: изучить арифметику может только тот, кто знает, что есть число. Такое утверждение гармонически сочеталось с трактовкой математики как науки о величинах.
В первой половине XYIII века авторы руководств по арифметике, статей в энциклопедиях и т.п. обычно определяли понятие числа по Евклиду: число есть множество единиц. Так по существу трактовал понятие числа Л. Магницкий. Определение Евклида сохраняется и во второй половине XYIII века, правда, как увидим, не в прежнем его толковании как общего понятия числа. Еще до XYIII века применение определения Евклида встретилось с рядом трудностей. Именно, опираясь на него, нужно было признать, что 0 и 1 не являются числами: нуль есть только знак для “ничто”; единица означает только одну вещь, она – основание, “причина” числа, но не число. Известно, что такая трактовка понятия единицы была развита в древней Греции. Потом она перешла к математикам Среднего востока и Западной Европы и имела последователей еще в XYII веке. Решающим, однако, было то, что определение Евклида по видимости мирилось с существованием дробных чисел, но не охватывало числа иррациональные. Этот факт учитывал Лейбниц и некоторые другие математики XYII века. “Понятие числа во всем объеме, - писал Лейбниц, - охватывает числа целые, дробные, иррациональные и трансцендентные”. Все возрастающая роль иррациональных чисел в механике, математическом анализе и алгебре способствовала тому, что во второй половине XYIII века чаще появляются и, наконец, завоевывает господствующее положение иное общее определение числа, выдвинутое Ньютоном: “число есть отношение одной величины к другой, того же рода, принятой за единицу”. Это определение охватывало как равноправные положительные целые, дробные, и иррациональные числа. Именно в этом обстоятельстве Даламбер и Котельников усматривали превосходство определения Ньютона. Единица становилась полноправным числом: измеряемая величина могла оказаться равной единице меры. Нуль, однако, по-прежнему выступал как знак “ничто”. Правда, в алгебре наметилось иное толкование нуля, как “середины” между положительными и отрицательными величинами, но в арифметику оно не проникло. Взгляд на нуль, как на число, стал завоевывать всеобщее признание с конца XYIII века в связи с разработкой вопросов обоснования арифметических действий. И это естественно, если учесть господствующую в это время чисто количественную трактовку понятия числа. На определение Ньютона опирались Эйлер, Лагранж и Лаплас. Его придерживались С. Котельников, А. Барсов и многие другие.
Во второй половине XYIII века большинство математиков рассматривало ньютоново определение понятия числа не только как целесообразное, но и как предельно широкое, охватывающее все возможные его виды. Определение Евклида начинает правильно трактоваться только как определение целого числа” [ 4 ].
Тематика книги отнюдь не случайно обрывается началом XIX века. Ее идея, видимо, такова. Да, действительно, понятие числа вызывало какие-то затруднения. Но это было довольно давно. Еще в эпоху античности или на рубеже XYII - XYIII веков. В крайнем случае, XIX. Но уж никак не в ХХ веке или того позже. Эвклид предварительно определил, Ньютон существенно уточнил. После чего все стало если и не совсем, то почти хорошо. А в общем числа это все: и целые, и дробные, и относительные, и рациональные, и иррациональные, и комплексные, такая вот сборная солянка. И нет никакой проблемы. Нужно только все это хорошенько выучить. Чтобы затем применять.
Чего стоит, однако, ньютоновское “уточнение”, когда одно неизвестное (число) определяется через два других неизвестных (величину и отношение). Они-то что значат? Ведь их не иначе как через число придется определять, совершая логический круг.
А как это излагается в начальной школе, где и закладывается фундамент образования?
Цитата:
“I. НАТУРАЛЬНЫЕ ЧИСЛА.
§ 1. Счет как основа арифметики. Натуральный ряд чисел.
Арифметика – это наука, изучающая числа и действия над ними. Счет является основой арифметики.
Прежде чем научиться вычислять, надо научиться считать и уметь записывать числа. Для счета люди пользуются названиями чисел и особыми знаками для краткого их обозначения.
Знаки для изображения чисел называются цифрами. Мы пользуемся десятью цифрами: 0, 1, 2, 3, 4, 5, 6, 7, 8, и 9. Эти цифры называются а р а б с к и м и.
Рекомендуем скачать другие рефераты по теме: эффективность диплом, доклад по обж.
Категории:
Предыдущая страница реферата | 1 2 3 4 5 6 7 | Следующая страница реферата