Конспект по дискретной математики
| Категория реферата: Рефераты по математике
| Теги реферата: сочинение по русскому, реферат стиль
| Добавил(а) на сайт: Panin.
1 2 3 4 5 | Следующая страница реферата
Дискретная математика
Введение
Общество 21в. – общество информационное. Центр тяжести в решении задач
переместился от задач вычислительной математики к задачам на дискретных
структурах. Математика нужна не как метод расчета, а как метод мышлению
средство формирования и организации…
Такое владение математикой богатой культуры, понимание важности точных
формулировок.
В дисциплине мало методов, но много определений и терминов. В основе
дискретной математике 4 раздела:
1. Язык дискретной математики;
2. Логические функции и автоматы;
3. Теория алгоритмов;
4. Графы и дискретные экстремальные задачи.
Теория алгоритмов и формальных систем является центральной в дисциплине. В настоящие время от нее возникли ответвления, например, разработка алгоритмических языков программирования.
Одной из важнейших проблем в дискретной математики является проблема сложности вычислений.
Теория сложности вычислений помогает оценить расход времени и памяти при решении задач на ЭВМ. Теория сложности позволяет выделить объективно сложные задачи (задачи перебора) и неразрешимые задачи.
Мы будем заниматься решением задач реальной размерности с учетом ограниченности временных и емкостных ресурсов ЭВМ.
Множества и операции над ними
Одно из основных понятий математики – множество.
Определение:
Множеством называется совокупность, набор предметов, объектов или
элементов.
Множество обозначают: M,N ….. m1, m2, mn – элементы множества.
Символика
A ( M – принадлежность элемента к множеству;
А ( М – непринадлежность элемента к множеству.
Примеры числовых множеств:
1,2,3,… множество натуральных чисел N;
…,-2,-1,0,1,2,… - множество целых чисел Z.
[pic] множество рациональных чисел а.
I – множество иррациональных чисел.
R – множество действительных чисел.
K – множество комплексных чисел.
Множество А называется подмножеством В, если всякий элемент А является
элементом В.
А ( В – А подмножество В (нестрогое включение)
Множества А и В равны, если их элементы совпадают.
A = B
Если А ( В и А ( В то А ( В (строгое включение).
Множества бывают конечные и бесконечные.
|М| - мощность множества (число его элементов).
Рекомендуем скачать другие рефераты по теме: ответы на кроссворды, скачать реферат бесплатно на тему.
Категории:
1 2 3 4 5 | Следующая страница реферата