Конструирование задач
| Категория реферата: Рефераты по математике
| Теги реферата: реферат машины, реферат на тему мыло
| Добавил(а) на сайт: Mandryko.
Предыдущая страница реферата | 1 2 3 4 5 6 7 | Следующая страница реферата
3. Частный случай.
Иногда поставленная задача оказывается настолько трудной, что не поддается решению, тогда используется следующий способ: решается часть задачи или рассматривается несколько задач, аналогичных данной, что и называется использованием “частного случая”. Бывает, что преподавателю не хватает какой-то простой задачи для иллюстрации новой теоремы, тогда тоже может помочь “частный случай”.
В истории есть примеры того, что обобщенные теоремы не находят применения, а их “частные случаи” получают широкое распространение и являются одними из важнейших среди прочих теорем математики (примером подобной ситуации может послужить теорема Паппа и ее “частный случай” теорема Пифагора).
Алгоритм конструирования:
Решение сложной конструкции
Детализирование задачи.
Изменение условий.
Объяснение возможного изменения решения.
Соединение и уточнение условий.
Решение полученной задачи.
Пример 6:Задача: "Произведение диагоналей вписанного четырехугольника равно сумме произведений его противоположных сторон. (Теорема Птолемея)" (ж. " Квант"№4 1991г.")3.1. Дано: окр., АВСК - вписанный четырехугольник, АС и ВК - диагонали.
Доказать: ВК × АС= СК ×АВ + ВС ×АК.
Доказательство:
Возьмем на диагонали АС точку М такую, что ÐАВМ= ÐСВК. Поскольку
угол ÐСКВ=ÐМАВ (как вписанные), ВСК подобен АВМ, поэтому ВК: АВ=СК: АМ Û АВ×СК=АМ×ВК(1). Из того, что ÐАВК=ÐМВС (по построению), а Ð ВСМ= ÐАКВ (вписанные), следует, что АВК подобен МВС,ÞАК: СМ= ВК: ВСÛ АК×ВС=ВК× СМ (2).
Сложив почленно (1) и (2), получаем ВК ×АС=СК ×АВ + ВС ×АК, что и требовалось доказать.
3.2. Итак, теорему можно поделить на группу терминов: "произведение диагоналей", "вписанный четырехугольник" и "сумма произведений противоположных сторон".
3.3. Для того чтобы получить частный случай теоремы Птолемея, выбран термин "вписанный четырехугольник", который изменяется на "вписанный квадрат".
3.4. В результате изменения условий, изменяется и решение: точка М переносится в центр окружности, который является и точкой пересечения диагоналей квадрата.
3.5. Полученная задача выглядит так: “Докажите, что квадрат стороны вписанного квадрата равен двум площадям этого квадрата”. (Составлена самостоятельно).
3.6. Решение:
Дано: АВСК - вписанный квадрат, АС и ВК - диагонали, О - центр окружности.
Доказать: ВК× ВК=2 SАВСК.
Доказательство:
Т.к. ÐАВО=ÐСВК (диагональ квадрата является биссектрисой),
ÐСКВ=ÐОАВ (вписанные), ВСК подобен АВК,Þ АВ×АВ= АО×ВК (1).
Рекомендуем скачать другие рефераты по теме: скачать контрольные работы, сочинения по русскому языку.
Категории:
Предыдущая страница реферата | 1 2 3 4 5 6 7 | Следующая страница реферата