Кривизна плоской кривой. Эволюта и эвольвента
| Категория реферата: Рефераты по математике
| Теги реферата: реферат этикет, изложение с элементами сочинения
| Добавил(а) на сайт: Битнер.
1 2 3 | Следующая страница реферата
Реферат по математическому анализу на тему:
«Кривизна плоской кривой. Эволюта и эвольвента».
Выполнил: студент МГТУ им. Баумана группа Э2 –11
Тимофеев Дмитрий
Преподаватель:
Москва 2004.
Введение
Для более полного представления о кривизне плоской кривой для начала введём понятие векторной функции скалярного аргумента.
Определение 1. Если каждому значению независимого переменного t(T(R , называемого далее скалярным аргументом, поставить в соответствие
единственный вектор r(t), то r(t) называют вектор-функцией скалярного
аргумента. Вектор r(t) с началом в фиксированной точке O называют радиус-
векторм.
Пусть в геометрическом (трёхмерном) пространстве задана прямоугольная
декартова система координат Oxyz с ортонормированным базисом i, j, k. Тогда
представление
r(t) = x(t)i + y(t)j + z(t)k
является разложением радиус-вектора r(t) в этом базисе, причем x(t), y(t), z(t) – действительные функции одного действительного переменного t с общей областью определения T(R , называемые координатными функциями вектор- функции r(t).
Понятие кривой
Введём теперь термин «кривой». Его строге определение связано с понятием
вектор-функции r(t), которую будем считать непрерывной на отрезке [a, b] .
Пусть в трёхмерном пространстве R3 задана прямоугольная декартова система
координат Oxyz с ртонормированным базисом {i, j, k}.
Определение 2. Множество Г(R3 точек, заданных радиус-векторм r(t) = x(t)i + y(t)j + z(t)k, t([a, b] соответствующим непрерывной на отрезке [a, b] вектор-функции r(t) называют непрерывной кривой, или просто кривой, а аргумент t - параметром кривой.
При фиксированном значении t = t0 ( [a, b] параметра значения x(t0), y(t0), z(t0) являются координатами точки кривой. Поэтому одна и та же кривая может иметь как векторное так и координатное представление
Г = {r ( R3 : r = r(t), t([a, b] },
Г = {(x; y; z) ( R3 : x = x(t), y = y(t), z = z(t), t([a, b] }
Заданную таким образом кривую называют годографом вектор-функции r(t), поскольку именно такую кривую описывает в простарнстве конец вектора при
изменении параметра t.
Кривую можно также представить как линию пересечения двух поверхностей с
уравнениями F1(x, y, z) = 0, F2(x, y, z) = 0. Выбрав за параметр одну из
координат, можно через него попытаться выразить из этой системы уравнений
остальные координаты. Если это удастся сделать, то можно будет записать
Г = {(x; y; z) ( R3 : x = x(t), y = y(t), z = z(t), t([c, d] }.
Одной и той же точке кривой могут соответствовать различные значения параметра t. Такие точки кривой называют её кратными точками. Начальной и конечной точками кривой называются точки с радиус-векторами r(a) и r(b) соответственно. Если конечная точка кривой совпадает с её начальной точкой, то кривую называют замкнутой. Замкнутую кривую, не имеющую кратных точек при t((a, b) называют простым замкнутым контуром.
Определение 3. Кривую, лежащую в некоторой плоскости называют плоской.
Если эта плоскость выбрана за координатную плоскость xOy, то координатное
представление плоской кривой Г имеет вид:
Г = {(x; y; z) ( R3 : x = x(t), y = y(t), z = z(t), t([a, b] }.
причём равенство z=0 обычно опускают и пишут
Г = {(x; y) ( R2 : x = x(t), y = y(t), t([a, b] }.
.
График непрерывной на отрезке [c, d] функции f(x) является плоской кривой с
координатным представлением Г = {(x; y) ( R2 : x = x, y = f(x), x([c, d] }.
В этом случае роль параметра выполняет аргумент x . Плоская кривая является
годографом радиус-вектора r(t) = x(t)i + y(t)j или r(x) = xi + f(x)j
соответсвенно.
Кривизна плоской кривой.
Рекомендуем скачать другие рефераты по теме: развитие россии реферат, доклад по физике.
Категории:
1 2 3 | Следующая страница реферата