Кривизна плоской кривой. Эволюта и эвольвента
| Категория реферата: Рефераты по математике
| Теги реферата: реферат на тему ресурсы, древния греция реферат
| Добавил(а) на сайт: Племянников.
Предыдущая страница реферата | 1 2 3 4 | Следующая страница реферата
Пусть дуга кривой M0M (рис. 1) есть график функции y=f(x), определённой на интервале (a ,b). Определим длину дуги кривой.
Возьмём на кривой АВ точки M0, M1, M2, … , Mi-1, Mi…, Mn-1, M.
Соединив взятые точки отрезками, получим ломаную линию M0 M1M2… Mi-1 Mi…Mn-1M, вписанную в дугу M0 M. Обозначим длину этой ломаной линии через Pn.
Длиной дуги M0M называется предел (обозначим его через s), к которому стремится длина ломаной при стремлении к нулю наибольшей длин отрезков ломанной Mi-1 Mi , если этот предел существует и не зависит от выбора точек ломаной M0 M1M2… Mi-1 Mi…Mn-1M .
Найдём выражение дифференциала дуги.
Пусть имеется на плоскости кривая, заданная уравнением y=f(x). Пусть M0(x0, y0)- некотрая фиксированная точка кривой. Обозначим через s длину дуги M0M (рис.3). При изменении абсциссы x точки М длина s дуги будет меняться, т. е. s есть функция x. Найдём производную s по x.
Дадим x приращение Dx. Тогда дуга s получит приращение Ds = дл. ÈMM1. Пусть - хорда, стягивающая эту дугу. Для того чтобы найти , поступим следующим образом:
Из DMM1Q находим = (Dx)2 +(Dy)2. Умножим и разделим левую часть наDs2:
Разделим все члены равенства на Dx2:
Найдём предел левой и правой частей при Dx®0. Учитывая, что и , получим
Для дифференциала дуги получим следующее выражение:
или
Мы получили выражение дифференциала дуги для того случая, когда кривая задана уравнением y=f(x). Но эта же формула сохраняется и в том случае, когда кривая задана параметрически:
и выражение принимает вид: .
Кривизна
Первая производная функции даёт нам простейшую характеристику линии y=f(x), а именно её направление. Вторая производная тесно связана с другой количественной характеристикой этой линии, с так называемой кривизной, устанавливающей меру изогнутости или искривлённости линии.
Пусть мы имеем кривую, которая не пересекает сама себя и имеет определённую касательную в каждой точке. Проведём касательные к кривой в каких-нибудь двух её точках А и В и обозначим через a угол, образованный этими касательными, или – точнее - угол поворота касательной при переходе от точки А к точке В (рис. 4). Этот угол называется углом смежности. Угол смежности в некоторой степени даёт представление о степени изогнутости дуги. У двух дуг, имеющих одинаковую длину, больше изогнута та, у которой угол смежности больше (рис. 5,4).
рис. 4 рис. 5
Полной характеристикой изогнутости кривой будет отношение угла смежности к длине соответствующей дуги.
Определение 4. Средней кривизной Кср дуги ÈАВ называется отношение соответствующего угла смежности a к длине дуги:
Для одной и той же кривой средняя кривизна её различных частей (дуг) может быть различной; так, например, для кривой (см. рис. 6) средняя кривизна дуги АВ не равна средней кривизне дуги А1В1 , хотя длины этих дуг равны между собой.
Рекомендуем скачать другие рефераты по теме: мини сочинение, детские рефераты.
Категории:
Предыдущая страница реферата | 1 2 3 4 | Следующая страница реферата