
Математическое ожидание и дисперсия для интервальных и пропорциональных шкал. Доверительные интервалы
| Категория реферата: Рефераты по математике
| Теги реферата: контрольные 2 класс, физика и техника
| Добавил(а) на сайт: Райков.
1 2 3 4 5 6 | Следующая страница реферата
Математическое ожидание и дисперсия для интервальных и пропорциональных шкал. Доверительные интервалы.
С.В. Усатиков, кандидат физ-мат наук, доцент; С.П. Грушевский, кандидат физ-мат наук, доцент; М.М. Кириченко, кандидат социологических наук
Рассмотрим случай, когда в проводимом эксперименте числовая шкала имеет единицу измерения, т.е. про полученные числовые величины всегда можно сказать, насколько одно больше другого. Например, х - это число ошибок, допущенных при каком-либо тестировании, или число правильных ответов. Обозначим х1,...,хк деления этой шкалы, а n1,...,nk - частоты или число попаданий случайной величины х на каждое из этих делений. Например, в тестировании: шкала х1=0 правильных ответов, ..., хк=к-1 правильных ответов; n1 тестируемых не дали ни одного правильного ответа..., nk тестируемых дали к-1 правильных ответов.
Математическим ожиданием или просто средним называется число mx, вычисляемое по следующему правилу:
mx=
(n1x1+.....+nkxk),
где n=n1+...+nk - общее число испытаний
Дисперсией
называется число , вычисляемое по
следующему правилу:
чаще
используется число
, которое
называется стандартным отклонением.
Например, группу из n=11 учащихся опросили и получили следующее число правильных ответов: