Решение уравнений, неравенств, систем с параметром (алгебра и начала анализа)
| Категория реферата: Рефераты по математике
| Теги реферата: онегин сочинение, красная книга доклад
| Добавил(а) на сайт: Борисов.
Предыдущая страница реферата | 1 2 3 4 5 6 7 8 9 10 11 | Следующая страница реферата
Записываем ответ.
I. Решить уравнение
(1)
Решение.
Поскольку х=0 не является корнем уравнения, то можно разрешить уравнение относительно а :
или
График функции – две “склеенных” гиперболы. Количество решений исходного уравнения определяется количеством точек пересечения построенной линии и прямой у=а.
Если а Î (-¥;-1]È(1;+¥)È , то прямая у=а пересекает график уравнения (1) в одной точке. Абсциссу этой точки найдем при решении уравнения относительно х.
Таким образом, на этом промежутке уравнение (1) имеет решение .
Если а Î , то прямая у=а пересекает график уравнения (1) в двух точках. Абсциссы этих точек можно найти из уравнений и , получаем
и .
Если а Î , то прямая у=а не пересекает график уравнения (1), следовательно решений нет.
Ответ:
Если а Î (-¥;-1]È(1;+¥)È, то ;
Если а Î , то , ;
Если а Î , то решений нет.
II. Найти все значения параметра а, при которых уравнение имеет три различных корня.
Решение.
Переписав уравнение в виде и рассмотрев пару функций , можно заметить, что искомые значения параметра а и только они будут соответствовать тем положениям графика функции , при которых он имеет точно три точки пересечения с графиком функции .
В системе координат хОу построим график функции ). Для этого можно представить её в виде и, рассмотрев четыре возникающих случая, запишем эту функцию в виде
Поскольку график функции – это прямая, имеющая угол наклона к оси Ох, равный , и пересекающая ось Оу в точке с координатами (0 , а), заключаем, что три указанные точки пересечения можно получить лишь в случае, когда эта прямая касается графика функции . Поэтому находим производную
Ответ: .
III. Найти все значения параметра а, при каждом из которых система уравнений
Рекомендуем скачать другие рефераты по теме: рефераты бесплатно, реферат услуги.
Категории:
Предыдущая страница реферата | 1 2 3 4 5 6 7 8 9 10 11 | Следующая страница реферата