Решение уравнений, неравенств, систем с параметром (алгебра и начала анализа)
| Категория реферата: Рефераты по математике
| Теги реферата: онегин сочинение, красная книга доклад
| Добавил(а) на сайт: Борисов.
Предыдущая страница реферата | 1 2 3 4 5 6 7 8 9 10 11 | Следующая страница реферата
По графику определяем, при каких значениях а уравнение (5) имеет решение и при каких – не имеет решения.
Ответ:
если , то
если , то ;
если , то решений нет;
если , то , .
VI. Каким условиям должны удовлетворять те значения параметров и , при которых системы
(1)
и
(2)
имеют одинаковое число решений ?
Решение.
С учетом того, что имеет смысл только при , получаем после преобразований систему
(3)
равносильную системе (1).
Система (2) равносильна системе
(4)
Первое уравнение системы (4) задает в плоскости хОу семейство прямых, второе уравнение задает семейство концентрических окружностей с центром в точке А(1;1) и радиусом
Поскольку , а , то , и, следовательно, система (4) имеет не менее четырех решений. При окружность касается прямой и система (4) имеет пять решений.
Таким образом, если , то система (4) имеет четыре решения, если , то таких решений будет больше, чем четыре.
Если же иметь в виду не радиусы окружностей, а сам параметр а, то система (4) имеет четыре решения в случае, когда , и больше четырех решений, если .
Обратимся теперь к рассмотрению системы (3). Первое уравнение этой системы задаёт в плоскости хОу семейство гипербол, расположенных в первом и втором квадрантах. Второе уравнение системы (3) задает в плоскости хОу семейство прямых.
При фиксированных положительных а и b система (3) может иметь два, три, или четыре решения. Число же решений зависит от того, будет ли прямая, заданная уравнением , иметь общие точки с гиперболой при (прямая всегда имеет одну точку пересечения с графиком функции ).
Для решения этого рассмотрим уравнение
,
Рекомендуем скачать другие рефераты по теме: рефераты бесплатно, реферат услуги.
Категории:
Предыдущая страница реферата | 1 2 3 4 5 6 7 8 9 10 11 | Следующая страница реферата