Содержание и значение математической символики
| Категория реферата: Рефераты по математике
| Теги реферата: реферат на тему организация, доклад
| Добавил(а) на сайт: Андроника.
Предыдущая страница реферата | 9 10 11 12 13 14 15 16 17 18 19 | Следующая страница реферата
Таким образом, в принципе зная эти высказывания, можно было бы построить русские фразы, выражающие эти сложные высказывания. Только словесное описание сложных высказываний быстро становится малообозримым, и именно введение целесообразной символики позволяет проводить более глубокое и точное исследование логических связей между различными высказываниями.
Располагая значением истинности простых высказываний, легко подсчитать на основании определения связок значение истинности сложного высказывания. Пусть, например, дано сложное высказывание
((bÚ с) Û (b Ù a))
и пусть входящие в него элементарные высказывания имеют следующие значения истинности: а = л, b = и, с = и. Тогда b Ú с = и, b Ù a = л, так что (( bÚ с) Û (b Ù а)), т. е. рассматриваемое высказывание ложно.
4.1.2 Высказывания и булевы функции
Одной из основных задач алгебры высказываний является установление значения истинности сложных высказываний в зависимости от значения истинности входящих в них простых высказываний. Для этого целесообразно рассматривать сложные высказывания как функции входящих в них простых высказываний. С другой стороны, так как значение истинности (и или л) сложного высказывания зависит по определению логических связок не от самих простых высказываний, а лишь от их значения истинности, то можно считать, что любое сложное высказывание определяет функцию, аргументы которой независимо друг от друга принимают значения и или л, а значение самой функции также принадлежит множеству {и, л} (конечно, существенно не то, что речь идет о функциях от нескольких аргументов из множества {и, л} в множество {и, л}, а лишь то, что данные множества двухэлементны. Эти множества зачастую обозначают не через {и, л}, а, например, через {0, 1}, считая, что 1 означает «истину», а 0 – «ложь»).
Такие функции называются булевыми функциями (по имени Д. Буля). Например, формула F (а, b, с) = (а Ù b) Þ (с Ù а) описывает, учитывая определение входящих в нее связок, булеву функцию, задаваемую следующей таблицей:
а |
b |
с |
F(a, b, с) |
а |
b |
с |
F(a, b, с) |
и |
и |
и |
и |
л |
и |
и |
и |
и |
и |
л Рекомендуем скачать другие рефераты по теме: образ сочинение, реферат бесплатно без регистрации. Категории:Предыдущая страница реферата | 9 10 11 12 13 14 15 16 17 18 19 | Следующая страница реферата Поделитесь этой записью или добавьте в закладки |