Содержание и значение математической символики
| Категория реферата: Рефераты по математике
| Теги реферата: реферат на тему организация, доклад
| Добавил(а) на сайт: Андроника.
Предыдущая страница реферата | 1 2 3 4 5 6 7 8 9 10 11 | Следующая страница реферата
Индусы рассматривали числа безотносительно к геометрии. В этом их алгебра имеет сходство с алгеброй Диофанта. Они распространили правила действия над рациональными числами на числа иррациональные, производя над ними непосредственные выкладки, а не прибегая к построениям, как это делали греки. Например, им было известно, что
![]()
Греки, не знавшие отрицательных чисел, решая уравнения, преобразовывали их так, чтобы обе части уравнения при значении неизвестной, удовлетворяющей этому уравнению, были положительными. Если этого не происходило, то менялись условия задачи. Индусы в аналогичных ситуациях не были стеснены в своих действиях: они либо отбрасывали получающиеся отрицательные решения, либо интерпретировали их как долг, задолженность. Отсюда сделан был естественный шаг к установлению правил действий над величинами при любом выборе знаков этих величин, а также к выявлению наличия двух корней у квадратных уравнений и двузначности квадратного корня.
Индусами был сделан шаг вперед по сравнению с Диофантом и в совершенствовании алгебраической символики: они ввели обозначения нескольких различных неизвестных и их степеней, которые были, как у Диофанта, по сути дела сокращениями слов. Кроме того, они искали решения неопределенных уравнений не в рациональных, а в целых числах.
2.1.4 Алгебра арабов.
Дальнейшее развитие математика получила у арабов, завоевавших в VII в. Переднюю Азию, Северную Африку и Испанию. Создались благоприятные условия для слияния двух культур – восточной и западной, для усвоения арабами богатого математического наследия эллинов и индусской арифметики и алгебры.
Но еще до того как началось усиленное изучение арабами трудов древних математиков, в 820 г., вышел трактат по алгебре «Краткая книга об исчислении ал-джабра и ал-мукабалы» Мухаммеда ибн Муса ал-Хорезми (т. е. из Хорезма, 787 – ок. 850г. н. э.), где давались числовое и геометрическое решения уравнений первой и второй степеней.
Название трактата соответствует операциям при решении уравнений: «ал-джабр» (восстанавливать) означает восстановление отрицательного члена в одной части уравнения в виде положительного в другой. Например, преобразовав уравнение
2х2 + Зх -2 = 2х к виду 2х2 + Зх = 2х + 2, мы произвели операцию ал-джабр.
«Ал-мукабала» означает сопоставление подобных членов, приведение их к одному; в нашем уравнении подобные члены Зх и 2х, поэтому получим 2x2 + x = 2.
Модификация слова ал-джабр породила более позднее алгебра. Аналогично, слово алгорифм (алгоритм) произошло от ал-Хорезми.
Основное внимание в трактате ал-Хорезми обращает на решение уравнений вида
ax2 = bx, ax2 = c, ax2 + bx = c, ax2 + c = bx, bx + c = ax2, bx = c,
которые формулирует словесно, например, так: «квадраты и корни равны числу» (ах2 + bх = с). Он высказывает правила, дающие только положительные решения уравнений, определяет условия, при которых эти решения существуют. Обоснование правил ал-Хорезми дает в духе геометрической алгебры древних.
От арабов Европа получила следующий способ решения уравнения
х2 + ах = b.

Построим
квадрат х2, к его сторонам приложим четырехугольники длины х + 2а/4 = х +
а/2 и ширины а/4. Тогда площадь
полученного квадрата
= x2
+ ax +
.
Значит, x2 + ax +
=
= b +
,
= b +
.
Величины b и а известны, поэтому можно построить
, откуда х +
=
-
. Впрочем, ал-Хорезми, приведший в своем сочинении
этот метод, уравнению ах2 + с = bх приписывал два корня.
В трактате приведены некоторые сведения о действиях над алгебраическими выражениями, примеры решения треугольников много задач о разделе наследства приводящих к уравнениям первой степени. Таким образом, трактат ал-Хорезми не содержал ничего нового по сравнению с тем, что было у греческих авторов и индусов, но он заслуживает внимания потому, что в течение длительного времени был руководством, по которому велось обучение в Европе.
2.1.5 Развитие алгебры в Европе.
Каково же было состояние математики в это время в Европе. Об этом наука располагает крайне скудными сведениями.
В XII – XIII вв. в Европе интенсивно переводились в арабского языка как труды самих арабов, так и работы древних греков, переведенные на арабский язык.
Первым европейским математиком, которому удалось осветить многие вопросы и внести в математику свой вклад, был Леонардо Пизанский (Фибоначчи, 1180–1240), написавший «Книгу абака». В ней рассмотрены различные задачи, указаны методы их решения, причем арифметика и алгебра линейных и квадратных уравнений изложены с небывалой до этого времени точностью и полнотой.
Существо задачи Леонардо излагает словесно; неизвестную он называет res (вещь) или radix (корень); квадрат неизвестной – census (имущество) или quadratus (квадрат); данное число – numerus. Все это латинские пероводы соответствующих латинских слов.
Современник Леонардо, Иордан Неморарий (XIII в), употреблял буквенные обозначения более систематично и решал задачи с применением линейных и квадратных уравнений, сначала в общем виде, а затем иллюстрировал их числовыми примерами.
Рекомендуем скачать другие рефераты по теме: образ сочинение, реферат бесплатно без регистрации.
Категории:
Предыдущая страница реферата | 1 2 3 4 5 6 7 8 9 10 11 | Следующая страница реферата
Главная