Образовательный портал Claw.ru
Всё для учебы, работы и отдыха
» Шпаргалки, рефераты, курсовые
» Сочинения и изложения
» Конспекты и лекции
» Энциклопедии

и — как вы уже, конечно, догадались — ещё так:

an+1 – cn+1√2 = (an – cn√2)(2 – √2).

(9)

Отсюда по индукции, пользуясь (7), получаем:

an + cn√2 = (2 + √2)n–1(a1 + c1√2) = (2 + √2)n,

an – cn√2 = (2 – √2)n–1(a1 – c1√2) = (2 – √2)n.

Поэтому

cn =

(2 + √2)n – (2 – √2)n

2√2

,

а так как e2n = 2cn–1, получаем окончательно

e2n =

(2 + √2)n–1 – (2 – √2)n–1

√2

,   e2n–1 = 0.

Задача решена. Неясно только, как в этой задаче (и в предыдущей задаче6) можно было додуматься до формул, содержащих ±√2, — ведь в задаче речь идёт о целых числах! (Для участников олимпиады и читателей «Кванта» задача7 была облегчена тем, что в формулировке указывался ответ — «Квант», 1979, №11, М595).

Однако «сопряжённые числа» возникли бы совершенно автоматически, если бы мы владели началами линейной алгебры (см.[12 ]), и применили стандартные правила этой науки к решению уравнений (7). Эти правила предлагают сначала выяснить, какие геометрические прогрессии (an = a0λn, cn = c0λn) удовлетворяют данному рекуррентному соотношению. Значения, для которых такие прогрессии существуют, — они называются характеристическими значениями или собственными числами — определяются из некоторого уравнения (оно тоже называется характеристическим). Для (7) характеристическое уравнение имеет вид λ2 – 4λ + 2 = 0, его корни — как раз 2 + √2 и 2 – √2. Зная эти корни, любое решение рекуррентного соотношения мы можем получить как «линейную комбинацию» соответствующих геометрических прогрессий ([11 ]). «Начальное условие» (в нашем случае a1 = 2, c1 = 1) определяет нужное нам решение однозначно.

Неудивительно, что даже самые простые рекуррентные целочисленные последовательности, для которых характеристическое уравнение — квадратное с целыми коэффициентами (примеры — те же (6) и (7) или последовательность Фибоначчи 1, 1, 2, 3, 5, 8, ..., Fn+1 = Fn + Fn–1; см.[9 ], [10 ]), выражаются, как функции номера, с помощью «сопряжённых» квадратичных иррациональностей.

Заметим, что большее характеристическое число определяет скорость роста последовательности: при больши́х n в задаче7 en » (2 + √2)n/√2. Можно сказать это ещё так:

lim

n → ∞

en+1

en


Рекомендуем скачать другие рефераты по теме: картинки реферат, реферат на тему личность.


Категории:




Предыдущая страница реферата | 6  7  8  9  10  11  12  13  14  15  16 |


Поделитесь этой записью или добавьте в закладки

   



Рефераты от А до Я