Образовательный портал Claw.ru
Всё для учебы, работы и отдыха
» Шпаргалки, рефераты, курсовые
» Сочинения и изложения
» Конспекты и лекции
» Энциклопедии

sn

qn

=

1

√3

  и 

lim

n → ∞

tn

qn

=

1

√6

.

Мы говорили выше, что сопряжённые числа a ± b√d возникают часто как корни квадратного уравнения с целыми коэффициентами. В связи с последней задачей возникает такое желание:

9. Написать уравнение с целыми коэффициентами, один из корней которого равен 1 + √2 + √3.

Возникает подозрение, что вместе с этим числом λ1 уравнению с целыми коэффициентами удовлетворяют и сопряжённые, которые в решении предыдущей задачи мы обозначили λ2, λ3, λ4. Нужное уравнение можно записать так:

(x – λ1)(x – λ2)(x – λ3)(x – λ4) = 0;

то есть

(x – 1 – √2 – √3)(x – 1 + √2 – √3)×  (x – 1 – √2 + √3)(x – 1 + √2 + √3) = 0;

после преобразований получаем

((x – 1)2 – 5 – 2√6)·((x – 1)2 – 5 + 2√6) = 0,  (x2 – 2x – 4)2 – 24 = 0,  x4 – 4x3 – 4x2 – 16x – 8 = 0.

Именно такое уравнение получилось бы в качестве характеристического, если бы мы применили упомянутую мелким шрифтом в конце предыдущего раздела общую теорию к исследованию линейного преобразования

(qn; rn; sn; tn) → (qn+1; rn+1; sn+1; tn+1)


Рекомендуем скачать другие рефераты по теме: картинки реферат, реферат на тему личность.


Категории:




Предыдущая страница реферата | 7  8  9  10  11  12  13  14  15  16  17 |


Поделитесь этой записью или добавьте в закладки

   



Рефераты от А до Я


Полезные заметки

  •