Структура исчисления предикатов - построение логического вывода
| Категория реферата: Рефераты по математике
| Теги реферата: как лечить шпоры, реферат на тему земля
| Добавил(а) на сайт: Ленин.
Предыдущая страница реферата | 1 2 3 4 5 6 7 8 | Следующая страница реферата
fⁿ₁ , fⁿ₂, …
(число функциональных символов той или иной местности зависит также от предназначения языка, возможно отсутствие символов этого рода вообще).
5. Логические константы: ⊃,&,",∃,∨,¬ соответственно — импликация, конъюнкция, квантор общности, квантор существования, дизъюнкция и отрицание. (Зачастую вводят лишь некоторые из этих символов. Из кванторов достаточны только ∀ или ∃, из остальных, называемых логическими связками, достаточно : ⊃ и ¬, или ∨ и ¬ , или & и ¬ . Другие константы, как, впрочем, и другие знаки, могут вводиться по определению.)
6. Технические знаки: (- левая скобка, )-правая скобка, ,- запятая.
Предметные константы, предикаторы, предметные функторы и предметные переменные называют дескриптивными терминами языка, при этом три первых категории (в отличие от предметных переменных) суть — дескриптивные постоянные данного языка.
II. Термы. Выражения этого типа являются аналогами имен естественного языка.
Определение: а) любая предметная переменная и предметная константа есть терм; б) если есть термы и f¸ⁿ есть n-местный предметный функтор, то f¸ⁿ ( есть терм; в) ничто, кроме указанного в пунктах а) и б), не есть терм.
III. формулы. В числе этих выражений имеются аналоги повествовательных предложений естественного языка, а также высказывательные формы — предикаты, представляющие собой особую семантическую категорию, которая не выделяется, — по крайней мере, явным образом — в естественном языке.
Определение: а) если термы и P¸ⁿ n-местный предикатор, то P¸ⁿ () есть формула (атомарная);
б) если А и В — формулы, то (А⊃В), (А&В), (AvB), ¬A — формулы; в) если х есть предметная переменная и А — формула, то ∀ x A и ∃ x A — формулы; г) ничто, кроме указанного в пунктах а) — в), не есть формула.
Договоримся в дальнейшем опускать, когда это удобно, внешние скобки в отдельно взятых формулах; например, вместо (А & В) писать просто
А &В.
Использованные в определениях терма и формулы символы и f¸ⁿ, P¸ⁿ, A, B, x (и в дальнейшем возможно x₁, x ₂ и т. д.) — знаки метаязыка называемые также синтаксическими переменными, возможными значениями которых являются выражения соответствующей категории описываемого (объектного) языка.
Формулы А и В, встречающиеся в пунктах б) и в), называются подформулами указанных здесь формул.
Введенные понятия исходного символа, терма и формулы языка являются эффективными (иначе: рекурсивными). Последнее означает, что имеется точный способ, с помощью которого всегда можно определить, относится ли некоторый символ к числу исходных символов языка, а для каждой последовательности исходных символов можем определить, представляет ли она терм или формулу. Для термов и формул такой способ заключен в их индуктивных определениях. Так, в каждой формуле, содержащей логические константы (знаки логических операций), имеется главная, или, что то же, последняя, в построении формулы операции. Выделив ее, мы выделяем тем самым собственные подформулы этой формулы. В последних снова выделяем главную операцию и так далее, пока не дойдем до какой-либо атомарной формулы. Если в процессе такого анализа исходного выражения в какой-либо части его, не являющейся атомарной формулой, нельзя выделить знак главной операции, то эта часть не является формулой, а следовательно, таковой не является все выражение. Возможность распознавания атомарных формул среди последовательностей символов является очевидной. (При констатации эффективности введенных понятий подразумевается так называемая абстракция отождествления согласно которой все различные случаи употребления некоторого символа, например а, рассматриваются как различные экземпляры, одного и того же символа, и предполагается, что мы умеем узнавать символ, несмотря на некоторые, всегда имеющиеся различия в его написаниях.)
Свободные и связанные вхождения переменых в формулы
Каждый случай, когда в последовательности знаков, представляющей собой формулу А, встречается предметная переменная x, называется вхождением этой переменной; каждое вхождение в формулу А предметной переменной x в часть вида ∀x В или ∃ х В, называется связанным. Подформула В формул указанного вида называется областью действия соответственно квантора общности ∀ и квантора существования ∃ с переменной x. Связанным является вхождение переменной, стоящей непосредственно за квантором, и каждое вхождение ее в область действия квантора. Всякое вхождение х в отличие от указанного, называется свободным. Переменная х, имеющая связанные вхождения и формулу А, называется связанной в этой формуле; переменная, имеющая свободные вхождения в формулу А, называется свободной в этой формуле.
Обратим внимание на то, что согласно определению свободной и связанной переменной одна и та же переменная в одной и той же формуле может быть свободной и связанной. Такова, например, переменная x₁ в формуле ∀ x₁ P¹(x₁) ∨ Q²(x₁, x₂); переменная x₂ является здесь свободной, но не связанной. Мы рассматриваем здесь только такие термы, в которых все переменные могут иметь лишь свободные вхождения, и, значит, являются свободными переменными. Формула и терм, не содержащие свободных переменных, называются соответственно замкнутой формулой и замкнутым т е р м о м (очевидно, что для рассматриваемых здесь термов, если терм замкнут, то он вообще не содержит переменных).
Семантика языка логики предикатов
Семантику языка, как мы видели при анализе естественного языка, составляет совокупность предметных значений и смысловых содержаний его выражений. Но в данном случае, поскольку речь идет не об анализе уже имеющегося языка, а о построении — в данном случае логического формализованного языка —то семантикой называют совокупность правил приписывания значений выражениям этого языка. Точнее говоря, здесь даже не ставится задача построения какого-то определенного языка. Создается лишь некоторая схема языка определенного типа, в данном случае так называемой классической логики предикатов первого порядка. Этот тип языка отличается от языков других типов, даже языков с тем же синтаксисом (например, языка интуиционистской логики предикатов, определенной системы релевантной логики) своей семантикой. Приписывание значений отдельным выражениям языка, составляющим дескриптивным терминам, употребляемым при построении формул, осуществляется лишь в составе тех или иных формул и при этом различно от случая к случаю в зависимости от характера решаемых логических задач, (например, при переводе каких то высказываний с естественного языка на данный формализованный, при анализе логических отношений между формулами данного языка, при аксиоматизации некоторых теорий, а именно при формулировке их аксиом в языке данного типа). Совокупность всех правил приписывания значений выражениям языка разбивается на следующие три группы (I,II,III).
I. Правила определения (задания) возможных значений предметных переменных и правила приписывания предметных значений дескриптивным постоянным в составе рассматриваемых в том или ином случае формул—интерпретация выражений языка. II. Правила приписывания значений свободным переменным в составе тех или иных рассматриваемых формулу. III. Правила приписывания истинностных значений интерпретированным формулам, не содержащим свободных переменных. I. Интерпретация состоит, во-первых, в выборе некоторого непустого множества D индивидов, предметов того или иного типа, к которым могут относиться образуемые из тех или иных формул языка высказывания. Индивиды — любые предметы в широком смысле этого слова, структура которых не учитывается, и которые можно отличать друг от друга. В качестве такой области D можно взять множество людей, растений, городов, чисел и т. д.; возможно, также объединение в одной области множеств различных предметов, например, людей, городов, домов (положим, для выражения высказываний о местах жительства людей). Но при этом все различные предметы, рассматриваются именно как индивиды. Область D — это область возможных значений предметных переменных символы предметных переменных х, у, z, становятся именно переменными лишь при указании области их возможных значений. Предполагается, что на области D определено некоторое множество свойств, отношений и характеристик предметно-функционального типа (то есть возможных значений предикаторов и предметных функторов).
Второй момент интерпретации языка состоит в задании некоторой функции j
(интерпретационная функция) приписывания значений дескриптивным постоянным (предметным константам, предикаторам, предметным функторам опять-таки в составе рассматриваемых формул). Задание j
в каждом конкретном случае представляет собой просто указание на то, какие значения должны быть приписаны упомянутым исходным символам языка в составе рассматриваемых формул. При этом предметным константам (простые постоянные термы) приписываются в качестве предметных значений определенные предметы из заданной области D. Предикатному (n-местному) символу P¸ⁿ при n =1 в качестве значения приписываются некоторые свойства а при n > 1 — n-местное отношение (между предметами В). Например, если область D есть множество целых положительных чисел, то предикатному символу P¹₁ можно приписать в качестве значения свойство «четно», а предикатору P²₁ отношение «больше» или «меньше». Предметному функтору fⁿ₁ в качестве предметного значения функция j
приписывает какую-нибудь n-местную предметную функцию, определенную на области D. Например, для области чисел таковыми могут быть синус, косинус (одноместные функции), сумма, произведение (двухместные функции), для области людей — одноместные (возраст, рост), для области материальных тел — объем, удельный вес.
Значения сложных термов, каковыми являются также предметы из области D, и приписывание которых составляет их интерпретацию, вычисляются в зависимости от приписанных уже значений их простым составляющим — предметным константам, предметным функторам, а также и возможным предметным переменным, значения которых приписываются по правилам II. Вычисление происходит в соответствии с правилами построения сложного терма. Сложные термы образуются, как мы видели, с применением предметных функторов и строятся индуктивно. Значение такого терма вычисляется последовательно в соответствии с порядком его построения.
Рекомендуем скачать другие рефераты по теме: курсовик, реферат по биологии 7 класс.
Категории:
Предыдущая страница реферата | 1 2 3 4 5 6 7 8 | Следующая страница реферата