Теория массового обслуживания с ожиданием
| Категория реферата: Рефераты по математике
| Теги реферата: персонал диплом, зимой сочинение
| Добавил(а) на сайт: Соболев.
Предыдущая страница реферата | 1 2 3 4 5 6 7 8 | Следующая страница реферата
kmPk=lPk-1 (10)
и при k ³ m mmPk=lPk-1 (11)
Введем для удобства записи обозначение
r=l/m.
Уравнение (10) позволяет заключить, что при 1 £ k < m
(12)
При k ³ m из уравнения (11) находим, что
и следовательно, при k ³ m
(13)
Остается найти P0. Для этого в (9) подставляем выражения Pk из (12) и (13). В результате
Так бесконечная сумма, стоящая в квадратных скобках, находится только при условии, что
r < m (14)
то при этом положении находим равенство
(15)
Если условие (14) не выполнено, т.е. если r ³ m, то ряд, стоящий в квадратной скобке уравнения для определения P0 , расходится и, значит, P0 должно быть равно 0. Но при этом, как следует из (12) и (13), при всех k ³ 1 оказывается Pk =0.
Методы теории цепей Маркова позволяют заключить, что при r ³ m с течением времени очередь стремится к ¥ по вероятности.
4. Некоторые подготовительные результаты.
Во введении мы уже говорили, что для задачи с ожиданием основной характеристикой качества обслуживания является длительность ожидания требованием начала обслуживания. Длительность ожидания представляет собой случайную величину, которую обозначим буквой g. Рассмотрим сейчас только задачу определения распределения вероятностей длительности ожидания в уже установившемся процессе обслуживания. Обозначим далее через P{g > t} вероятность того, что длительность ожидания превзойдет t, и через Pk{g > t} вероятность неравенства, указанного в скобке, при условии, что в момент поступления требования, в очереди уже находится k требований. В силу формулы полной вероятности имеем равенство
P{g > t}=. (16)
Прежде чем преобразовать эту формулу к виду, удобному для пользования, приготовим некоторые необходимые нам для дальнейшего сведения. Прежде всего для случаев m=1 и m=2 найдем простые формулы для P0. несложные преобразования приводят к таким равенствам: при m=1
P0=1-r, (17)
а при m=2
(18)
Рекомендуем скачать другие рефераты по теме: 1 ответ, рефераты баллы.
Категории:
Предыдущая страница реферата | 1 2 3 4 5 6 7 8 | Следующая страница реферата