Теория вероятностей: наука о случайном
| Категория реферата: Рефераты по математике
| Теги реферата: шпорі по философии, движение реферат
| Добавил(а) на сайт: Еременко.
Предыдущая страница реферата | 1 2 3 4 5
5. Несколько слов об истории развития Теории.
В XVII столетии Теорией занимались такие выдающиеся математики, как Паскаль, Ферма, Гюйгенс. При этом первые вклады в Теорию были сделаны в связи с изучением азартных игр.
Однако уже в конце XVII в. начали пользоваться Теорией при страховании кораблей, т.е. начали подсчитывать, сколько шансов на то, что корабль вернется в порт невредимым, не будет потоплен бурей, что груз не подмокнет, что он не будет захвачен пиратами и т.д. Такой расчет позволял определять, какую страховую сумму следует выплачивать и какой страховой взнос брать, чтобы это было выгодно для компании.
В первой половине XVIII в. для теории много сделал Яков Бернулли – член Российской Академии наук. Следует отметить труды С. Лапласа, С. Пуассона, К. Гаусса.
При всем при том, в течение второй половины XVIII в. Теория в известном смысле «топталась на месте». В то время была еще не ясна связь между различными явлениями в жизни и наукой о массовых явлениях. В середине XIX в. большой сдвиг в развитии Теории сделал русский математик П. Чебышев. Внесли большой вклад Марков, Ляпунов, Бернштейн, Колмогоров.
![]()
Теория сыграла большую практическую роль во Второй Мировой войне. Приведем пример из военной области. Понятно, что очень трудно сбить самолет одним выстрелом из винтовки. Ведь стрелок должен не только попасть в самолет, но поразить самое уязвимое место, например топливный бак. Поэтому вероятность того, что один стрелок собьет винтовкой самолет, ничтожна. Совсем другое дело – массовый обстрел. Если предположить, что вероятность сбить самолет одной винтовкой равна 0,004; соответственно, вероятность промаха – 0,996. Теперь предположим, что стреляют 500 стрелков; как мы доказали выше, вероятность промаха составляет
Таким образом, вероятность сбить самолет одним залпом равна 0,86. А если есть возможность произвести 2 – 3 залпа, то шансы у самолета уцелеть близки к нулю.
Так же Теория позволяла определять районы, в которых имели смысл поиски самолетов и подводных лодок или указывать пути, чтобы избежать встречи с ними. Типичной здесь является задача о том, как выгоднее вести караваны торговых судов по океану, в котором действуют вражеские подлодки. Если организовывать караваны из большого числа судов, то можно будет обойтись меньшим числом рейдов, но и возможные потери при встрече с флотом врага будут больше. Теория помогла рассчитать оптимальные размеры караванов и частоту их отправления. Задач такого рода возникало немало, поэтому при штабах организовывались специальные группы, занимающиеся расчетами вероятностей. После войны подобные расчеты стали применяться к хозяйственным вопросам мирного времени. Они составляли содержание нового большого направления, названного исследованием операций, которое оформляется в целую науку.
Список литературы
И. Зайдель. «Ошибки измерений физических величин»
О. С. Ивашев-Мусатов. «Теория вероятностей и математическая статистика»
Э. Борель. «Вероятность и достоверность»
И. М. Соболь. «Метод Монте-Карло»
Скачали данный реферат: Белинский, Харлампий, Ignat, Bessmertnyh, Bratcev, Podkolodnyj.
Последние просмотренные рефераты на тему: доклад на тему, культура шпаргалки, ответы 8 класс, научные текст.
Категории:
Предыдущая страница реферата | 1 2 3 4 5
Главная