Теория вероятности и математическая статистика
| Категория реферата: Рефераты по математике
| Теги реферата: мировая экономика, оформление доклада титульный лист
| Добавил(а) на сайт: Шеховцов.
Предыдущая страница реферата | 1 2 3 4 5 6 7 8 9 10 11 | Следующая страница реферата
Имеется испытание. В результате проведения испытания может наблюдаться одно событие из серии событий e. Все события из системы e называются наблюдаемыми. Введем предположение, что если события A Ì e, B Ì e наблюдаемы, то наблюдаемы и события .
Система событий F называется полем событий или алгеброй событий, если для двух произвольных событий A, B Ì F выполняется:
Дополнения
(A+B) Î F, (A×B) Î F
все конечные суммы элементов из алгебры принадлежат алгебре
все конечные произведения элементов из алгебры принадлежат алгебре
все дополнения конечных сумм и произведений принадлежат алгебре.
Таким образом, систему e мы расширяем до алгебры или поля F путем включения всех конечных сумм, произведений, и их дополнений. Т.е. считаем, что в результате проведения испытания наблюдаемая система является полем или алгеброй.
Множество всех подмножеств конечного числа событий является наблюдаемой системой - алгеброй, полем.
Этап 2:
Каждому событию A Î F ставим в соответствие число P(A), которое называется вероятностью наступления события A. Такая операция задает вероятностную меру.
Вероятностная мера - числовая скалярная функция, аргументами которой являются элементы из системы алгебры F. Введенная вероятностная мера удовлетворяет системе из трех аксиом.
P(U)=1.
Рассмотрим конечную или бесконечную систему попарно несовместных событий, каждое из которых принадлежит алгебре F.
. Если , то .
Алгебра событий называется s - алгеброй, если эта система событий содержит в себе все конечные суммы и произведения из алгебры F и их дополнения, а также все бесконечные суммы и произведения из алгебры и их дополнения.
Пример: В пространстве R1 зададим в качестве поля событий все конечные интервалы вида a³x>b, b¹a.
x³b, a³x³b.Над наблюдаемым полем событий F задается счетно-аддитивная мера - числовая скалярная функция, элементами которой являются элементы поля F, т.е. события. Она удовлетворяет следующим трем условиям-аксиомам теории вероятности.
. P(A) - число, принадлежащее сегменту [0, 1] и называющееся вероятностью наступления события A.
P(A) Î [0, 1] P(U)=1.
Пусть имеется A1, A2, A3,..., Ak - система попарно несовместных событий
Если , то .
Теорема о продолжении меры.
Рекомендуем скачать другие рефераты по теме: quality assurance design patterns системный анализ, 5 баллов рефераты.
Категории:
Предыдущая страница реферата | 1 2 3 4 5 6 7 8 9 10 11 | Следующая страница реферата