Транспортная задача линейного программирования
| Категория реферата: Рефераты по математике
| Теги реферата: сочинение описание, курсовики скачать бесплатно
| Добавил(а) на сайт: Эсмеральда.
Предыдущая страница реферата | 11 12 13 14 15 16 17 18 19 20 21 | Следующая страница реферата
Отсюда вытекает способ отыскания оптимального решения транспортной задачи, состоящий в том, что, имея некоторое базисное решение, вычисляют алгебраические суммы тарифов для всех свободных клеток. Если критерий оптимальности выполнен, то данное решение является оптимальным; если же имеются клетки с отрицательными алгебраическими суммами тарифов, то переходят к новому базису, производя пересчет по циклу, соответствующему одной из таких клеток. Полученное таким образом новое базисное решение будет лучше исходного – затраты на его реализацию будут меньшими. Для нового решения также проверяют выполнимость критерия оптимальности и в случае необходимости снова совершают пересчет по циклу для одной из клеток с отрицательной алгебраической суммой тарифов и т. д.
Через конечное число шагов приходят к искомому оптимальному базисному решению.
В случае если алгебраические суммы тарифов для всех свободных клеток положительны, мы имеем единственное оптимальное решение; если же алгебраические суммы тарифов для всех свободных клеток неотрицательны, но среди них имеются алгебраические суммы тарифов, равные нулю, то оптимальное решение не единственное: при пересчете по циклу для клетки с нулевой алгебраической суммой тарифов мы получим оптимальное же решение, но отличное от исходного (затраты по обоим планам будут одинаковыми).
В зависимости от методов подсчета алгебраических сумм тарифов для свободных клеток различают два метода отыскания оптимального решения транспортной задачи:
Распределительный метод. При этом методе для каждой пустой клетки строят цикл и для каждого цикла непосредственно вычисляют алгебраическую сумму тарифов.
Метод потенциалов. При этом методе предварительно находят потенциалы баз и потребителей, а затем вычисляют для каждой пустой клетки алгебраическую сумму тарифов с помощью потенциалов.
Преимущества метода потенциалов по сравнению с распределительным методом состоят в том, что отпадает необходимость построения циклов для каждой из пустых клеток и упрощается вычисление алгебраических сумм тарифов. Цикл строится только один – тот, по которому производится пересчет.
Применяя метод потенциалов, можно говорить не о знаке алгебраических сумм тарифов, а о сравнении косвенных тарифов с истинными. Требование неотрицательности алгебраических сумм тарифов заменяется условием, что косвенные тарифы не превосходят истинных.
Следует иметь в виду, что потенциалы (так же как и циклы) для каждого нового базисного плана определяются заново.
Выше рассматривалась закрытая модель транспортной задачи, с правильным балансом, когда выполняется условие (1.3). В случае выполнения (1.4) (открытая модель) баланс транспортной задачи может нарушаться в 2-ух направлениях:
1. Сумма запасов в пунктах отправления превышает сумму поданных заявок (транспортная задача с избытком запасов):
å аi > å bj ( где i=1,...,m ; j=1,...,n );
2. Сумма поданных заявок превышает наличные запасы (транспортная задача с избытком заявок):
å аi < å bj ( где i=1,...,m ; j=1,...,n );
Рассмотрим последовательно эти два случая:
Транспортная задача с избытком запасов.
Сведем её к ранее рассмотренной транспортной задаче с правильным балансом. Для этого, сверх имеющихся n пунктов назначения В1, B2, ... , Bn, введём ещё один, фиктивный, пункт назначения Bn+1, которому припишем фиктивную заявку, равную избытку запасов над заявками
bn+1 = å аi - å bj ( где i=1,...,m ; j=1,...,n ) ,
а стоимость перевозок из всех пунктов отправления в фиктивный пункт назначения bn+1 будем считать равной нулю. Введением фиктивного пункта назначения B n+1 с его заявкой b n+1 мы сравняли баланс транспортной задачи, и теперь ее можно решать, как обычную транспортную задачу с правильным балансом.
Транспортная задача с избытком заявок.
Эту задачу можно свести к обычной транспортной задаче с правильным балансом, если ввести фиктивный пункт отправления Am+1 с запасом am+1 равным недостающему запасу, и стоимость перевозок из фиктивного пункта отправления во все пункты назначения принять равной нулю.
Задача, двойственная к транспортной.
Построим задачу, двойственную к транспортной. С этой целью вспомним, что каждому пункту отправления и назначения отвечает определенное ограничение
(6.1) |
Рекомендуем скачать другие рефераты по теме: сайт рефератов, контрольная работа 7.
Категории:
Предыдущая страница реферата | 11 12 13 14 15 16 17 18 19 20 21 | Следующая страница реферата