Управление структурой преподавательского состава в университете
| Категория реферата: Рефераты по математике
| Теги реферата: заказать дипломную работу, русский язык 7 класс изложение
| Добавил(а) на сайт: Vlas.
Предыдущая страница реферата | 1 2 3 4 5 | Следующая страница реферата
[pic]. (15)
При k = 3 можно сделать задачу геометрически наглядной. Вектор х может
быть представлен как точка в трехмерном евклидовом пространстве. Каждая
такая точка должна лежать на плоскости x1 + x2 + x3 = 1 и находиться в
положительном октанте. Тогда множество всех возможных структур может быть
представлено множеством всех точек равностороннего треугольника с вершинами
(1, 0, 0), (0,1,0) и (0,0,1), показанного на рис. 2.
[pic]
Неравенство (15) определяет некоторую область в этом треугольнике, содержащую все структуры, которые могут сохраняться. Если найти границу
этой области, то окажется возможным непосредственно увидеть, какого рода
структуры сохраняются. Это достигается алгебраическим путем представления
всякого х, удовлетворяющего условию (15), в виде линейной комбинации
(линейной функции с положительными коэффициентами, дающими в сумме единицу)
фиксированного множества вершин. В результате получается, что область
сохраняемости является выпуклой оболочкой, определяемой этими вершинами.
Будем рассуждать в терминах произвольного k, однако сохраним геометрическую терминологию, использованную для k = 3.
Из (13) для х получаем
[pic]. (16)
Умножая обе части соотношения (16) на вектор-столбец из единиц, записываемый как I’, находим, что
[pic], (17) где элементы d суть суммы элементов строк матрицы (I – P)-1. Тогда, производя подстановку (17) в (16), получаем
[pic], (18) где ei — вектор, i-я координата которого 1, а остальные координаты — нули.
Пусть
[pic], тогда х можно записать как
[pic]. (19)
Коэффициенты ai неотрицательны, и их сумма равна единице. следовательно, любая такая точка х лежит в выпуклой области с вершинами, имеющими координаты
[pic], и каждая такая точка соответствует своему r.
Чтобы проиллюстрировать выкладки, возьмем данные примера из предыдущего параграфа:
[pic].
Для такой матрицы Р получаем
[pic].
Произведя деление каждой строки на сумму элементов этой строки, получаем вершины области, содержащей сохраняющиеся структуры
(0; 0; 1), (0; 0.5; 0.5), (0.429; 0.286; 0.286).
Эти точки нанесены на рис. 2, и область, содержащая сохраняющиеся
структуры, есть треугольник. Сделаем проверку. Возьмем, например, структуру
(0.429; 0.286; 0.286), домножим ее на общий размер системы N = 450:
(193.05; 128.7; 128.7) и подставим в (13), тем самым мы найдем управляемый
вектор набора r = (1; 0; 0). Легко проверяется, что структура
(193.05; 128.7; 128.7) сохраняется при заданных P, w и найденном r
(воспользовавшись, например, программой uspsvu1.m).
Аналогичный анализ можно провести для случая, когда управлять можно
только долей повышений. В данном случае мы фиксируем r и w и изучаем
влияние изменения элементов Р при ограничении вида di = 1 – wi для всех i.
В случае матрицы Р общего вида задача усложняется тем, что имеется
бесконечно много матриц Р, удовлетворяющих условию (11). Однако если
рассматривается некоторая простая иерархия, в которой повышения проводятся
только в следующей, более высокий класс, то Р имеет ненулевые элементы
только на главной диагонали и на диагонали над нею. В этом случае
существует единственное решение уравнения (11), и множество n, которому
соответствует некоторая матрица Р с неотрицательными элементами, представляет область репродуктивности. В отличие от области, определяемой
управлением набором, оказывается, что эта область включает структуры с
перегруженными более низкими классами. Полученный результат наводит на
мысль, что сохраняемость структуры, перегруженной нижними классами, может
быть более успешно реализована путем управления повышением, а не набором.
Заключение
Модель системы кадров, которая составила основу данного доклада, разумеется, является слишком упрощенной. Составляющие потерь, например, не
могут всегда считаться постоянными в пределах одного класса. Все
составляющие обнаруживают склонность к изменениям со временем, и при
некоторых условиях достигается возможность планирования этих изменений.
Одна из наиболее привлекательных особенностей марковской модели заключается
в том, что она может быть легко настроена на охват обобщений такого рода
без изменений ее главной структуры. Следовательно, продемонстрированный в
этом докладе подход относится к числу подходов, которые остаются пригодными
при значительно более общих условиях по сравнению с частными случаями, которые здесь подробно обсуждались.
Выше мы установили различие между использованием модели для прогнозирования и для управления. В первом случае вводимые допущения должны отображать — настолько точно, насколько это возможно, — реальное поведение системы в недавнем прошлом. При использовании модели для управления допущения распадаются на две группы. Те допущения, которые относятся к неуправляемым аспектам системы, должны, как и в случае прогнозирования, отражать действительность. Те же, которые относятся к переменным управления, имеют другой характер: они касаются возможностей администрации и, таким образом, должны основываться на сведениях об организации системы.
Рекомендуем скачать другие рефераты по теме: диплом купить, allbest.
Категории:
Предыдущая страница реферата | 1 2 3 4 5 | Следующая страница реферата